mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-06-05 12:30:39 +02:00
change pedestal types (#79)
Co-authored-by: Bechir <bechir.brahem420@gmail.com>
This commit is contained in:
parent
4f184ddf40
commit
4760648d87
@ -1,5 +1,5 @@
|
||||
|
||||
add_library(processing STATIC src/Pedestal.cpp)
|
||||
add_library(processing ${CMAKE_CURRENT_SOURCE_DIR}/src/placeholder_processing.cpp)
|
||||
target_include_directories(processing PUBLIC ${CMAKE_CURRENT_SOURCE_DIR}/include)
|
||||
target_link_libraries(processing PUBLIC core)
|
||||
|
||||
|
@ -8,9 +8,67 @@ namespace aare {
|
||||
|
||||
template <typename SUM_TYPE = double> class Pedestal {
|
||||
public:
|
||||
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000);
|
||||
~Pedestal();
|
||||
Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples = 1000)
|
||||
: m_rows(rows), m_cols(cols), m_freeze(false), m_samples(n_samples), m_cur_samples(NDArray<uint32_t, 2>({rows, cols}, 0)),m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})) {
|
||||
assert(rows > 0 && cols > 0 && n_samples > 0);
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
}
|
||||
~Pedestal() = default;
|
||||
|
||||
NDArray<SUM_TYPE, 2> mean() {
|
||||
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
|
||||
}
|
||||
return mean_array;
|
||||
}
|
||||
|
||||
NDArray<SUM_TYPE, 2> variance() {
|
||||
NDArray<SUM_TYPE, 2> variance_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
variance_array(i / m_cols, i % m_cols) = variance(i / m_cols, i % m_cols);
|
||||
}
|
||||
return variance_array;
|
||||
}
|
||||
|
||||
NDArray<SUM_TYPE, 2> standard_deviation() {
|
||||
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
standard_deviation_array(i / m_cols, i % m_cols) = standard_deviation(i / m_cols, i % m_cols);
|
||||
}
|
||||
|
||||
return standard_deviation_array;
|
||||
}
|
||||
void clear() {
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
clear(i / m_cols, i % m_cols);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* index level operations
|
||||
*/
|
||||
SUM_TYPE mean(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum(row, col) / m_cur_samples(row, col);
|
||||
}
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples(row, col) == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum2(row, col) / m_cur_samples(row, col) - mean(row, col) * mean(row, col);
|
||||
}
|
||||
SUM_TYPE standard_deviation(const uint32_t row, const uint32_t col) const { return std::sqrt(variance(row, col)); }
|
||||
|
||||
void clear(const uint32_t row, const uint32_t col) {
|
||||
m_sum(row, col) = 0;
|
||||
m_sum2(row, col) = 0;
|
||||
m_cur_samples(row, col) = 0;
|
||||
}
|
||||
// frame level operations
|
||||
template <typename T> void push(NDView<T, 2> frame) {
|
||||
assert(frame.size() == m_rows * m_cols);
|
||||
@ -23,39 +81,32 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
assert(frame.rows() == static_cast<size_t>(m_rows) && frame.cols() == static_cast<size_t>(m_cols));
|
||||
push<T>(frame.view<T>());
|
||||
}
|
||||
NDArray<SUM_TYPE> mean();
|
||||
NDArray<SUM_TYPE> variance();
|
||||
NDArray<SUM_TYPE> standard_deviation();
|
||||
void clear();
|
||||
|
||||
// getter functions
|
||||
inline uint32_t rows() const { return m_rows; }
|
||||
inline uint32_t cols() const { return m_cols; }
|
||||
inline uint32_t n_samples() const { return m_samples; }
|
||||
inline uint32_t *cur_samples() const { return m_cur_samples; }
|
||||
inline NDArray<uint32_t, 2> cur_samples() const { return m_cur_samples; }
|
||||
inline NDArray<SUM_TYPE, 2> get_sum() const { return m_sum; }
|
||||
inline NDArray<SUM_TYPE, 2> get_sum2() const { return m_sum2; }
|
||||
|
||||
// pixel level operations (should be refactored to allow users to implement their own pixel level operations)
|
||||
template <typename T> inline void push(const uint32_t row, const uint32_t col, const T val) {
|
||||
template <typename T> inline void push(const uint32_t row, const uint32_t col, const T val_) {
|
||||
if (m_freeze) {
|
||||
return;
|
||||
}
|
||||
SUM_TYPE val = static_cast<SUM_TYPE>(val_);
|
||||
const uint32_t idx = index(row, col);
|
||||
if (m_cur_samples[idx] < m_samples) {
|
||||
if (m_cur_samples(idx) < m_samples) {
|
||||
m_sum(idx) += val;
|
||||
m_sum2(idx) += val * val;
|
||||
m_cur_samples[idx]++;
|
||||
m_cur_samples(idx)++;
|
||||
} else {
|
||||
m_sum(idx) += val - m_sum(idx) / m_cur_samples[idx];
|
||||
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples[idx];
|
||||
m_sum(idx) += val - m_sum(idx) / m_cur_samples(idx);
|
||||
m_sum2(idx) += val * val - m_sum2(idx) / m_cur_samples(idx);
|
||||
}
|
||||
}
|
||||
SUM_TYPE mean(const uint32_t row, const uint32_t col) const;
|
||||
SUM_TYPE variance(const uint32_t row, const uint32_t col) const;
|
||||
SUM_TYPE standard_deviation(const uint32_t row, const uint32_t col) const;
|
||||
inline uint32_t index(const uint32_t row, const uint32_t col) const { return row * m_cols + col; };
|
||||
void clear(const uint32_t row, const uint32_t col);
|
||||
void set_freeze(bool freeze) { m_freeze = freeze; }
|
||||
|
||||
private:
|
||||
@ -63,7 +114,7 @@ template <typename SUM_TYPE = double> class Pedestal {
|
||||
uint32_t m_cols;
|
||||
bool m_freeze;
|
||||
uint32_t m_samples;
|
||||
uint32_t *m_cur_samples{nullptr};
|
||||
NDArray<uint32_t, 2> m_cur_samples;
|
||||
NDArray<SUM_TYPE, 2> m_sum;
|
||||
NDArray<SUM_TYPE, 2> m_sum2;
|
||||
};
|
||||
|
@ -1,76 +0,0 @@
|
||||
#include "aare/processing/Pedestal.hpp"
|
||||
#include <cmath>
|
||||
#include <cstddef>
|
||||
|
||||
namespace aare {
|
||||
template <typename SUM_TYPE>
|
||||
Pedestal<SUM_TYPE>::Pedestal(uint32_t rows, uint32_t cols, uint32_t n_samples)
|
||||
: m_freeze(false), m_rows(rows), m_cols(cols), m_samples(n_samples), m_sum(NDArray<SUM_TYPE, 2>({rows, cols})),
|
||||
m_sum2(NDArray<SUM_TYPE, 2>({rows, cols})), m_cur_samples(new uint32_t[rows * cols]{}) {
|
||||
assert(rows > 0 && cols > 0 && n_samples > 0);
|
||||
m_sum = 0;
|
||||
m_sum2 = 0;
|
||||
}
|
||||
|
||||
template <typename SUM_TYPE> NDArray<SUM_TYPE, 2> Pedestal<SUM_TYPE>::mean() {
|
||||
NDArray<SUM_TYPE, 2> mean_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
mean_array(i / m_cols, i % m_cols) = mean(i / m_cols, i % m_cols);
|
||||
}
|
||||
return mean_array;
|
||||
}
|
||||
|
||||
template <typename SUM_TYPE> NDArray<SUM_TYPE, 2> Pedestal<SUM_TYPE>::variance() {
|
||||
NDArray<SUM_TYPE, 2> variance_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
variance_array(i / m_cols, i % m_cols) = variance(i / m_cols, i % m_cols);
|
||||
}
|
||||
return variance_array;
|
||||
}
|
||||
|
||||
template <typename SUM_TYPE> NDArray<SUM_TYPE, 2> Pedestal<SUM_TYPE>::standard_deviation() {
|
||||
NDArray<SUM_TYPE, 2> standard_deviation_array({m_rows, m_cols});
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
standard_deviation_array(i / m_cols, i % m_cols) = standard_deviation(i / m_cols, i % m_cols);
|
||||
}
|
||||
|
||||
return standard_deviation_array;
|
||||
}
|
||||
template <typename SUM_TYPE> void Pedestal<SUM_TYPE>::clear() {
|
||||
for (uint32_t i = 0; i < m_rows * m_cols; i++) {
|
||||
clear(i / m_cols, i % m_cols);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* index level operations
|
||||
*/
|
||||
template <typename SUM_TYPE> SUM_TYPE Pedestal<SUM_TYPE>::mean(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples[index(row, col)] == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum(row, col) / m_cur_samples[index(row, col)];
|
||||
}
|
||||
template <typename SUM_TYPE> SUM_TYPE Pedestal<SUM_TYPE>::variance(const uint32_t row, const uint32_t col) const {
|
||||
if (m_cur_samples[index(row, col)] == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return m_sum2(row, col) / m_cur_samples[index(row, col)] - mean(row, col) * mean(row, col);
|
||||
}
|
||||
template <typename SUM_TYPE> SUM_TYPE Pedestal<SUM_TYPE>::standard_deviation(const uint32_t row, const uint32_t col) const {
|
||||
return std::sqrt(variance(row, col));
|
||||
}
|
||||
|
||||
template <typename SUM_TYPE> void Pedestal<SUM_TYPE>::clear(const uint32_t row, const uint32_t col) {
|
||||
m_sum(row, col) = 0;
|
||||
m_sum2(row, col) = 0;
|
||||
m_cur_samples[index(row, col)] = 0;
|
||||
}
|
||||
|
||||
template <typename SUM_TYPE> Pedestal<SUM_TYPE>::~Pedestal() { delete[] m_cur_samples; }
|
||||
|
||||
template class Pedestal<double>;
|
||||
template class Pedestal<float>;
|
||||
template class Pedestal<long double>;
|
||||
|
||||
} // namespace aare
|
0
src/processing/src/placeholder_processing.cpp
Normal file
0
src/processing/src/placeholder_processing.cpp
Normal file
@ -10,12 +10,11 @@ TEST_CASE("test pedestal constructor") {
|
||||
REQUIRE(pedestal.rows() == 10);
|
||||
REQUIRE(pedestal.cols() == 10);
|
||||
REQUIRE(pedestal.n_samples() == 5);
|
||||
REQUIRE(pedestal.cur_samples() != nullptr);
|
||||
for (int i = 0; i < 10; i++) {
|
||||
for (int j = 0; j < 10; j++) {
|
||||
REQUIRE(pedestal.get_sum()(i, j) == 0);
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == 0);
|
||||
REQUIRE(pedestal.cur_samples()[pedestal.index(i, j)] == 0);
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -35,7 +34,7 @@ TEST_CASE("test pedestal push") {
|
||||
for (int j = 0; j < 10; j++) {
|
||||
REQUIRE(pedestal.get_sum()(i, j) == i + j);
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == (i + j) * (i + j));
|
||||
REQUIRE(pedestal.cur_samples()[pedestal.index(i, j)] == 1);
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == 1);
|
||||
}
|
||||
}
|
||||
|
||||
@ -45,7 +44,7 @@ TEST_CASE("test pedestal push") {
|
||||
for (int j = 0; j < 10; j++) {
|
||||
REQUIRE(pedestal.get_sum()(i, j) == 0);
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == 0);
|
||||
REQUIRE(pedestal.cur_samples()[pedestal.index(i, j)] == 0);
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == 0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -55,11 +54,11 @@ TEST_CASE("test pedestal push") {
|
||||
for (uint32_t i = 0; i < 10; i++) {
|
||||
for (uint32_t j = 0; j < 10; j++) {
|
||||
if (k < 5) {
|
||||
REQUIRE(pedestal.cur_samples()[pedestal.index(i, j)] == k + 1);
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == k + 1);
|
||||
REQUIRE(pedestal.get_sum()(i, j) == (k + 1) * (i + j));
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == (k + 1) * (i + j) * (i + j));
|
||||
} else {
|
||||
REQUIRE(pedestal.cur_samples()[pedestal.index(i, j)] == 5);
|
||||
REQUIRE(pedestal.cur_samples()(i, j) == 5);
|
||||
REQUIRE(pedestal.get_sum()(i, j) == 5 * (i + j));
|
||||
REQUIRE(pedestal.get_sum2()(i, j) == 5 * (i + j) * (i + j));
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user