This commit is contained in:
Dominik Werder
2021-06-14 23:10:14 +02:00
parent bb6d853b78
commit bebce14f56
9 changed files with 881 additions and 67 deletions

View File

@@ -21,6 +21,7 @@ async fn get_binned_json_0_inner() -> Result<(), Error> {
"1970-01-01T00:20:10.000Z",
"1970-01-01T01:20:30.000Z",
10,
AggKind::DimXBins1,
cluster,
13,
true,
@@ -41,6 +42,7 @@ async fn get_binned_json_1_inner() -> Result<(), Error> {
"1970-01-01T00:20:10.000Z",
"1970-01-01T01:20:45.000Z",
10,
AggKind::DimXBins1,
cluster,
13,
true,
@@ -48,17 +50,38 @@ async fn get_binned_json_1_inner() -> Result<(), Error> {
.await
}
#[test]
fn get_binned_json_2() {
taskrun::run(get_binned_json_2_inner()).unwrap();
}
async fn get_binned_json_2_inner() -> Result<(), Error> {
let rh = require_test_hosts_running()?;
let cluster = &rh.cluster;
get_binned_json_common(
"wave-f64-be-n21",
"1970-01-01T00:20:10.000Z",
"1970-01-01T02:20:10.000Z",
2,
AggKind::DimXBinsN(0),
cluster,
2,
true,
)
.await
}
async fn get_binned_json_common(
channel_name: &str,
beg_date: &str,
end_date: &str,
bin_count: u32,
agg_kind: AggKind,
cluster: &Cluster,
expect_bin_count: u32,
expect_finalised_range: bool,
) -> Result<(), Error> {
let t1 = Utc::now();
let agg_kind = AggKind::DimXBins1;
let node0 = &cluster.nodes[0];
let beg_date: DateTime<Utc> = beg_date.parse()?;
let end_date: DateTime<Utc> = end_date.parse()?;

View File

@@ -28,7 +28,7 @@ pub trait TimeBinnableType:
{
type Output: TimeBinnableType;
type Aggregator: TimeBinnableTypeAggregator<Input = Self, Output = Self::Output> + Send + Unpin;
fn aggregator(range: NanoRange) -> Self::Aggregator;
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator;
}
pub struct TBinnerStream<S, TBT>
@@ -38,6 +38,7 @@ where
{
inp: Pin<Box<S>>,
spec: BinnedRange,
bin_count: usize,
curbin: u32,
left: Option<Poll<Option<Sitemty<TBT>>>>,
aggtor: Option<<TBT as TimeBinnableType>::Aggregator>,
@@ -55,14 +56,15 @@ where
S: Stream<Item = Sitemty<TBT>> + Send + Unpin + 'static,
TBT: TimeBinnableType,
{
pub fn new(inp: S, spec: BinnedRange) -> Self {
pub fn new(inp: S, spec: BinnedRange, bin_count: usize) -> Self {
let range = spec.get_range(0);
Self {
inp: Box::pin(inp),
spec,
bin_count,
curbin: 0,
left: None,
aggtor: Some(<TBT as TimeBinnableType>::aggregator(range)),
aggtor: Some(<TBT as TimeBinnableType>::aggregator(range, bin_count)),
tmp_agg_results: VecDeque::new(),
inp_completed: false,
all_bins_emitted: false,
@@ -90,7 +92,7 @@ where
let range = self.spec.get_range(self.curbin);
let ret = self
.aggtor
.replace(<TBT as TimeBinnableType>::aggregator(range))
.replace(<TBT as TimeBinnableType>::aggregator(range, self.bin_count))
.unwrap()
.result();
// TODO should we accumulate bins before emit? Maybe not, we want to stay responsive.

View File

@@ -3,12 +3,12 @@ use crate::agg::streams::Appendable;
use crate::agg::{Fits, FitsInside};
use crate::binned::dim1::MinMaxAvgDim1Bins;
use crate::binned::{
EventsNodeProcessor, FilterFittingInside, MinMaxAvgBins, NumOps, PushableIndex, RangeOverlapInfo, ReadPbv,
ReadableFromFile, WithLen, WithTimestamps,
EventsNodeProcessor, FilterFittingInside, MinMaxAvgBins, MinMaxAvgWaveBins, NumOps, PushableIndex,
RangeOverlapInfo, ReadPbv, ReadableFromFile, WithLen, WithTimestamps,
};
use crate::decode::EventValues;
use err::Error;
use netpod::NanoRange;
use netpod::{NanoRange, Shape};
use serde::{Deserialize, Serialize};
use std::marker::PhantomData;
use tokio::fs::File;
@@ -24,11 +24,16 @@ where
type Input = NTY;
type Output = EventValues<NTY>;
fn process(inp: EventValues<Self::Input>) -> Self::Output {
fn create(shape: Shape) -> Self {
Self { _m1: PhantomData }
}
fn process(&self, inp: EventValues<Self::Input>) -> Self::Output {
inp
}
}
// TODO rename Scalar -> Dim0
#[derive(Serialize, Deserialize)]
pub struct XBinnedScalarEvents<NTY> {
tss: Vec<u64>,
@@ -169,7 +174,7 @@ where
type Output = MinMaxAvgBins<NTY>;
type Aggregator = XBinnedScalarEventsAggregator<NTY>;
fn aggregator(range: NanoRange) -> Self::Aggregator {
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range)
}
}
@@ -269,6 +274,241 @@ where
}
}
// TODO rename Wave -> Dim1
#[derive(Serialize, Deserialize)]
pub struct XBinnedWaveEvents<NTY> {
tss: Vec<u64>,
mins: Vec<Vec<NTY>>,
maxs: Vec<Vec<NTY>>,
avgs: Vec<Vec<f32>>,
}
impl<NTY> XBinnedWaveEvents<NTY> {
pub fn empty() -> Self {
Self {
tss: vec![],
mins: vec![],
maxs: vec![],
avgs: vec![],
}
}
}
impl<NTY> WithLen for XBinnedWaveEvents<NTY> {
fn len(&self) -> usize {
self.tss.len()
}
}
impl<NTY> WithTimestamps for XBinnedWaveEvents<NTY> {
fn ts(&self, ix: usize) -> u64 {
self.tss[ix]
}
}
impl<NTY> RangeOverlapInfo for XBinnedWaveEvents<NTY> {
fn ends_before(&self, range: NanoRange) -> bool {
match self.tss.last() {
Some(&ts) => ts < range.beg,
None => true,
}
}
fn ends_after(&self, range: NanoRange) -> bool {
match self.tss.last() {
Some(&ts) => ts >= range.end,
None => panic!(),
}
}
fn starts_after(&self, range: NanoRange) -> bool {
match self.tss.first() {
Some(&ts) => ts >= range.end,
None => panic!(),
}
}
}
impl<NTY> FitsInside for XBinnedWaveEvents<NTY> {
fn fits_inside(&self, range: NanoRange) -> Fits {
if self.tss.is_empty() {
Fits::Empty
} else {
let t1 = *self.tss.first().unwrap();
let t2 = *self.tss.last().unwrap();
if t2 < range.beg {
Fits::Lower
} else if t1 > range.end {
Fits::Greater
} else if t1 < range.beg && t2 > range.end {
Fits::PartlyLowerAndGreater
} else if t1 < range.beg {
Fits::PartlyLower
} else if t2 > range.end {
Fits::PartlyGreater
} else {
Fits::Inside
}
}
}
}
impl<NTY> FilterFittingInside for XBinnedWaveEvents<NTY> {
fn filter_fitting_inside(self, fit_range: NanoRange) -> Option<Self> {
match self.fits_inside(fit_range) {
Fits::Inside | Fits::PartlyGreater | Fits::PartlyLower | Fits::PartlyLowerAndGreater => Some(self),
_ => None,
}
}
}
impl<NTY> PushableIndex for XBinnedWaveEvents<NTY>
where
NTY: NumOps,
{
fn push_index(&mut self, src: &Self, ix: usize) {
self.tss.push(src.tss[ix]);
self.mins.push(src.mins[ix]);
self.maxs.push(src.maxs[ix]);
self.avgs.push(src.avgs[ix]);
}
}
impl<NTY> Appendable for XBinnedWaveEvents<NTY>
where
NTY: NumOps,
{
fn empty() -> Self {
Self::empty()
}
fn append(&mut self, src: &Self) {
self.tss.extend_from_slice(&src.tss);
self.mins.extend_from_slice(&src.mins);
self.maxs.extend_from_slice(&src.maxs);
self.avgs.extend_from_slice(&src.avgs);
}
}
impl<NTY> ReadableFromFile for XBinnedWaveEvents<NTY>
where
NTY: NumOps,
{
fn read_from_file(_file: File) -> Result<ReadPbv<Self>, Error> {
// TODO refactor types such that this impl is not needed.
panic!()
}
fn from_buf(_buf: &[u8]) -> Result<Self, Error> {
panic!()
}
}
impl<NTY> TimeBinnableType for XBinnedWaveEvents<NTY>
where
NTY: NumOps,
{
type Output = MinMaxAvgWaveBins<NTY>;
type Aggregator = XBinnedWaveEventsAggregator<NTY>;
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range, bin_count)
}
}
pub struct XBinnedWaveEventsAggregator<NTY>
where
NTY: NumOps,
{
range: NanoRange,
count: u64,
min: Vec<NTY>,
max: Vec<NTY>,
sum: Vec<f32>,
sumc: u64,
}
impl<NTY> XBinnedWaveEventsAggregator<NTY>
where
NTY: NumOps,
{
pub fn new(range: NanoRange, bin_count: usize) -> Self {
Self {
range,
count: 0,
min: vec![NTY::min_or_nan(); bin_count],
max: vec![NTY::max_or_nan(); bin_count],
sum: vec![0f32; bin_count],
sumc: 0,
}
}
}
impl<NTY> TimeBinnableTypeAggregator for XBinnedWaveEventsAggregator<NTY>
where
NTY: NumOps,
{
type Input = XBinnedWaveEvents<NTY>;
type Output = MinMaxAvgWaveBins<NTY>;
fn range(&self) -> &NanoRange {
&self.range
}
fn ingest(&mut self, item: &Self::Input) {
for i1 in 0..item.tss.len() {
let ts = item.tss[i1];
if ts < self.range.beg {
continue;
} else if ts >= self.range.end {
continue;
} else {
for (i2, v) in item.mins[i1].iter().enumerate() {
if *v < self.min[i2] || self.min[i2].is_nan() {
self.min[i2] = *v;
}
}
for (i2, v) in item.maxs[i1].iter().enumerate() {
if *v > self.max[i2] || self.max[i2].is_nan() {
self.max[i2] = *v;
}
}
for (i2, v) in item.avgs[i1].iter().enumerate() {
if v.is_nan() {
} else {
self.sum[i2] += v;
}
}
self.sumc += 1;
self.count += 1;
}
}
}
fn result(self) -> Self::Output {
if self.sumc == 0 {
Self::Output {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
mins: vec![None],
maxs: vec![None],
avgs: vec![None],
}
} else {
let avg = self.sum.iter().map(|k| *k / self.sumc as f32).collect();
Self::Output {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
mins: vec![Some(self.min)],
maxs: vec![Some(self.max)],
avgs: vec![Some(avg)],
}
}
}
}
#[derive(Serialize, Deserialize)]
pub struct WaveEvents<NTY> {
pub tss: Vec<u64>,
@@ -398,8 +638,8 @@ where
type Output = MinMaxAvgDim1Bins<NTY>;
type Aggregator = WaveEventsAggregator<NTY>;
fn aggregator(range: NanoRange) -> Self::Aggregator {
Self::Aggregator::new(range)
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range, bin_count)
}
}
@@ -419,11 +659,12 @@ impl<NTY> WaveEventsAggregator<NTY>
where
NTY: NumOps,
{
pub fn new(range: NanoRange) -> Self {
pub fn new(range: NanoRange, bin_count: usize) -> Self {
Self {
range,
count: 0,
min: None,
// TODO create the right number of bins right here:
min: err::todoval(),
max: None,
sumc: 0,
sum: None,
@@ -525,9 +766,13 @@ where
type Input = Vec<NTY>;
type Output = XBinnedScalarEvents<NTY>;
fn process(inp: EventValues<Self::Input>) -> Self::Output {
fn create(shape: Shape) -> Self {
Self { _m1: PhantomData }
}
fn process(&self, inp: EventValues<Self::Input>) -> Self::Output {
let nev = inp.tss.len();
let mut ret = XBinnedScalarEvents {
let mut ret = Self::Output {
tss: inp.tss,
xbincount: Vec::with_capacity(nev),
mins: Vec::with_capacity(nev),
@@ -535,6 +780,8 @@ where
avgs: Vec::with_capacity(nev),
};
for i1 in 0..nev {
// TODO why do I work here with Option?
err::todo();
let mut min = None;
let mut max = None;
let mut sum = 0f32;
@@ -584,6 +831,7 @@ where
}
pub struct WaveNBinner<NTY> {
bin_count: usize,
_m1: PhantomData<NTY>,
}
@@ -592,11 +840,60 @@ where
NTY: NumOps,
{
type Input = Vec<NTY>;
// TODO need new container type for this case:
type Output = XBinnedScalarEvents<NTY>;
type Output = XBinnedWaveEvents<NTY>;
fn process(_inp: EventValues<Self::Input>) -> Self::Output {
err::todoval()
fn create(shape: Shape) -> Self {
// TODO get rid of panic potential
let bin_count = if let Shape::Wave(n) = shape { n } else { panic!() } as usize;
Self {
bin_count,
_m1: PhantomData,
}
}
fn process(&self, inp: EventValues<Self::Input>) -> Self::Output {
let nev = inp.tss.len();
let mut ret = Self::Output {
tss: inp.tss,
mins: Vec::with_capacity(nev),
maxs: Vec::with_capacity(nev),
avgs: Vec::with_capacity(nev),
};
for i1 in 0..nev {
let mut min = vec![NTY::min_or_nan(); self.bin_count];
let mut max = vec![NTY::max_or_nan(); self.bin_count];
let mut sum = vec![0f32; self.bin_count];
let mut sumc = vec![0; self.bin_count];
for (i2, &v) in inp.values[i1].iter().enumerate() {
let i3 = i2 * self.bin_count / inp.values[i1].len();
if v < min[i3] {
min[i3] = v;
}
if v > max[i3] {
max[i3] = v;
}
if v.is_nan() {
} else {
sum[i3] += v.as_();
sumc[i3] += 1;
}
}
ret.mins.push(min);
ret.maxs.push(max);
let avg = sum
.iter()
.enumerate()
.map(|(i3, &k)| {
if sumc[i3] > 0 {
sum[i3] / sumc[i3] as f32
} else {
f32::NAN
}
})
.collect();
ret.avgs.push(avg);
}
ret
}
}
@@ -611,7 +908,11 @@ where
type Input = Vec<NTY>;
type Output = WaveEvents<NTY>;
fn process(inp: EventValues<Self::Input>) -> Self::Output {
fn create(shape: Shape) -> Self {
Self { _m1: PhantomData }
}
fn process(&self, inp: EventValues<Self::Input>) -> Self::Output {
if false {
let n = if inp.values.len() > 0 { inp.values[0].len() } else { 0 };
let n = if n > 5 { 5 } else { n };

View File

@@ -23,13 +23,14 @@ use futures_util::{FutureExt, StreamExt};
use netpod::log::*;
use netpod::timeunits::SEC;
use netpod::{
BinnedRange, ByteOrder, NanoRange, NodeConfigCached, PerfOpts, PreBinnedPatchIterator, PreBinnedPatchRange,
ScalarType, Shape,
AggKind, BinnedRange, ByteOrder, NanoRange, NodeConfigCached, PerfOpts, PreBinnedPatchIterator,
PreBinnedPatchRange, ScalarType, Shape,
};
use num_traits::{AsPrimitive, Bounded, Zero};
use num_traits::{AsPrimitive, Bounded, Float, Zero};
use parse::channelconfig::{extract_matching_config_entry, read_local_config, MatchingConfigEntry};
use serde::de::DeserializeOwned;
use serde::{Deserialize, Serialize, Serializer};
use std::fmt;
use std::fmt::Debug;
use std::future::Future;
use std::marker::PhantomData;
@@ -122,8 +123,13 @@ where
range: query.range().clone(),
agg_kind: query.agg_kind().clone(),
};
let x_bin_count = if let AggKind::DimXBinsN(n) = query.agg_kind() {
*n as usize
} else {
0
};
let s = MergedFromRemotes::<ENP>::new(evq, perf_opts, node_config.node_config.cluster.clone());
let s = TBinnerStream::<_, <ENP as EventsNodeProcessor>::Output>::new(s, range);
let s = TBinnerStream::<_, <ENP as EventsNodeProcessor>::Output>::new(s, range, x_bin_count);
let ret = BinnedResponseStat {
stream: Box::pin(s),
bin_count,
@@ -770,13 +776,47 @@ pub trait NumOps:
+ Serialize
+ DeserializeOwned
{
fn min_or_nan() -> Self;
fn max_or_nan() -> Self;
fn is_nan(&self) -> bool;
}
impl<T> NumOps for T where
T: Send + Unpin + Debug + Zero + AsPrimitive<f32> + Bounded + PartialOrd + SubFrId + Serialize + DeserializeOwned
{
fn tmp() {}
macro_rules! impl_num_ops {
($ty:ident, $min_or_nan:ident, $max_or_nan:ident, $is_nan:ident) => {
impl NumOps for $ty {
fn min_or_nan() -> Self {
$ty::$min_or_nan
}
fn max_or_nan() -> Self {
$ty::$max_or_nan
}
fn is_nan(&self) -> bool {
$is_nan(self)
}
}
};
}
fn is_nan_int<T>(x: &T) -> bool {
false
}
fn is_nan_float<T: Float>(x: &T) -> bool {
x.is_nan()
}
impl_num_ops!(u8, MIN, MAX, is_nan_int);
impl_num_ops!(u16, MIN, MAX, is_nan_int);
impl_num_ops!(u32, MIN, MAX, is_nan_int);
impl_num_ops!(u64, MIN, MAX, is_nan_int);
impl_num_ops!(i8, MIN, MAX, is_nan_int);
impl_num_ops!(i16, MIN, MAX, is_nan_int);
impl_num_ops!(i32, MIN, MAX, is_nan_int);
impl_num_ops!(i64, MIN, MAX, is_nan_int);
impl_num_ops!(f32, NAN, NAN, is_nan_float);
impl_num_ops!(f64, NAN, NAN, is_nan_float);
pub trait EventsDecoder {
type Output;
fn ingest(&mut self, event: &[u8]);
@@ -786,7 +826,8 @@ pub trait EventsDecoder {
pub trait EventsNodeProcessor: Send + Unpin {
type Input;
type Output: Send + Unpin + DeserializeOwned + WithTimestamps + TimeBinnableType;
fn process(inp: EventValues<Self::Input>) -> Self::Output;
fn create(shape: Shape) -> Self;
fn process(&self, inp: EventValues<Self::Input>) -> Self::Output;
}
pub trait TimeBins: Send + Unpin + WithLen + Appendable + FilterFittingInside {
@@ -799,16 +840,17 @@ pub struct MinMaxAvgBins<NTY> {
pub ts1s: Vec<u64>,
pub ts2s: Vec<u64>,
pub counts: Vec<u64>,
// TODO get rid of Option:
pub mins: Vec<Option<NTY>>,
pub maxs: Vec<Option<NTY>>,
pub avgs: Vec<Option<f32>>,
}
impl<NTY> std::fmt::Debug for MinMaxAvgBins<NTY>
impl<NTY> fmt::Debug for MinMaxAvgBins<NTY>
where
NTY: std::fmt::Debug,
NTY: fmt::Debug,
{
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"MinMaxAvgBins count {} ts1s {:?} ts2s {:?} counts {:?} mins {:?} maxs {:?} avgs {:?}",
@@ -951,7 +993,7 @@ where
type Output = MinMaxAvgBins<NTY>;
type Aggregator = MinMaxAvgBinsAggregator<NTY>;
fn aggregator(range: NanoRange) -> Self::Aggregator {
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range)
}
}
@@ -1103,7 +1145,8 @@ impl<NTY> EventValuesAggregator<NTY> {
Self {
range,
count: 0,
min: None,
// TODO get rid of Option
min: err::todoval(),
max: None,
sumc: 0,
sum: 0f32,
@@ -1282,3 +1325,400 @@ pub enum RangeCompletableItem<T> {
RangeComplete,
Data(T),
}
#[derive(Clone, Serialize, Deserialize)]
pub struct MinMaxAvgWaveBins<NTY> {
pub ts1s: Vec<u64>,
pub ts2s: Vec<u64>,
pub counts: Vec<u64>,
pub mins: Vec<Option<Vec<NTY>>>,
pub maxs: Vec<Option<Vec<NTY>>>,
pub avgs: Vec<Option<Vec<f32>>>,
}
impl<NTY> fmt::Debug for MinMaxAvgWaveBins<NTY>
where
NTY: fmt::Debug,
{
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
write!(
fmt,
"MinMaxAvgBins count {} ts1s {:?} ts2s {:?} counts {:?} mins {:?} maxs {:?} avgs {:?}",
self.ts1s.len(),
self.ts1s.iter().map(|k| k / SEC).collect::<Vec<_>>(),
self.ts2s.iter().map(|k| k / SEC).collect::<Vec<_>>(),
self.counts,
self.mins,
self.maxs,
self.avgs,
)
}
}
impl<NTY> MinMaxAvgWaveBins<NTY> {
pub fn empty() -> Self {
Self {
ts1s: vec![],
ts2s: vec![],
counts: vec![],
mins: vec![],
maxs: vec![],
avgs: vec![],
}
}
}
impl<NTY> FitsInside for MinMaxAvgWaveBins<NTY> {
fn fits_inside(&self, range: NanoRange) -> Fits {
if self.ts1s.is_empty() {
Fits::Empty
} else {
let t1 = *self.ts1s.first().unwrap();
let t2 = *self.ts2s.last().unwrap();
if t2 <= range.beg {
Fits::Lower
} else if t1 >= range.end {
Fits::Greater
} else if t1 < range.beg && t2 > range.end {
Fits::PartlyLowerAndGreater
} else if t1 < range.beg {
Fits::PartlyLower
} else if t2 > range.end {
Fits::PartlyGreater
} else {
Fits::Inside
}
}
}
}
impl<NTY> FilterFittingInside for MinMaxAvgWaveBins<NTY> {
fn filter_fitting_inside(self, fit_range: NanoRange) -> Option<Self> {
match self.fits_inside(fit_range) {
Fits::Inside | Fits::PartlyGreater | Fits::PartlyLower | Fits::PartlyLowerAndGreater => Some(self),
_ => None,
}
}
}
impl<NTY> RangeOverlapInfo for MinMaxAvgWaveBins<NTY> {
fn ends_before(&self, range: NanoRange) -> bool {
match self.ts2s.last() {
Some(&ts) => ts <= range.beg,
None => true,
}
}
fn ends_after(&self, range: NanoRange) -> bool {
match self.ts2s.last() {
Some(&ts) => ts > range.end,
None => panic!(),
}
}
fn starts_after(&self, range: NanoRange) -> bool {
match self.ts1s.first() {
Some(&ts) => ts >= range.end,
None => panic!(),
}
}
}
impl<NTY> TimeBins for MinMaxAvgWaveBins<NTY>
where
NTY: NumOps,
{
fn ts1s(&self) -> &Vec<u64> {
&self.ts1s
}
fn ts2s(&self) -> &Vec<u64> {
&self.ts2s
}
}
impl<NTY> WithLen for MinMaxAvgWaveBins<NTY> {
fn len(&self) -> usize {
self.ts1s.len()
}
}
impl<NTY> Appendable for MinMaxAvgWaveBins<NTY>
where
NTY: NumOps,
{
fn empty() -> Self {
Self::empty()
}
fn append(&mut self, src: &Self) {
self.ts1s.extend_from_slice(&src.ts1s);
self.ts2s.extend_from_slice(&src.ts2s);
self.counts.extend_from_slice(&src.counts);
self.mins.extend_from_slice(&src.mins);
self.maxs.extend_from_slice(&src.maxs);
self.avgs.extend_from_slice(&src.avgs);
}
}
impl<NTY> ReadableFromFile for MinMaxAvgWaveBins<NTY>
where
NTY: NumOps,
{
// TODO this function is not needed in the trait:
fn read_from_file(file: File) -> Result<ReadPbv<Self>, Error> {
Ok(ReadPbv::new(file))
}
fn from_buf(buf: &[u8]) -> Result<Self, Error> {
let dec = serde_cbor::from_slice(&buf)?;
Ok(dec)
}
}
impl<NTY> TimeBinnableType for MinMaxAvgWaveBins<NTY>
where
NTY: NumOps,
{
type Output = MinMaxAvgWaveBins<NTY>;
type Aggregator = MinMaxAvgWaveBinsAggregator<NTY>;
fn aggregator(range: NanoRange, x_bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range, x_bin_count)
}
}
impl<NTY> ToJsonResult for Sitemty<MinMaxAvgWaveBins<NTY>>
where
NTY: NumOps,
{
fn to_json_result(&self) -> Result<Box<dyn ToJsonBytes>, Error> {
Ok(Box::new(serde_json::Value::String(format!(
"MinMaxAvgBins/non-json-item"
))))
}
}
pub struct MinMaxAvgWaveBinsCollected<NTY> {
_m1: PhantomData<NTY>,
}
impl<NTY> MinMaxAvgWaveBinsCollected<NTY> {
pub fn new() -> Self {
Self { _m1: PhantomData }
}
}
#[derive(Serialize)]
pub struct MinMaxAvgWaveBinsCollectedResult<NTY> {
ts0: u64,
tsoff: Vec<u64>,
//ts_bin_edges: Vec<IsoDateTime>,
counts: Vec<u64>,
mins: Vec<Option<Vec<NTY>>>,
maxs: Vec<Option<Vec<NTY>>>,
avgs: Vec<Option<Vec<f32>>>,
#[serde(skip_serializing_if = "Bool::is_false", rename = "finalisedRange")]
finalised_range: bool,
#[serde(skip_serializing_if = "Zero::is_zero", rename = "missingBins")]
missing_bins: u32,
#[serde(skip_serializing_if = "Option::is_none", rename = "continueAt")]
//continue_at: Option<IsoDateTime>,
continue_at: Option<u64>,
}
pub struct MinMaxAvgWaveBinsCollector<NTY> {
bin_count_exp: u32,
timed_out: bool,
range_complete: bool,
vals: MinMaxAvgWaveBins<NTY>,
_m1: PhantomData<NTY>,
}
impl<NTY> MinMaxAvgWaveBinsCollector<NTY> {
pub fn new(bin_count_exp: u32) -> Self {
Self {
bin_count_exp,
timed_out: false,
range_complete: false,
vals: MinMaxAvgWaveBins::<NTY>::empty(),
_m1: PhantomData,
}
}
}
impl<NTY> WithLen for MinMaxAvgWaveBinsCollector<NTY>
where
NTY: NumOps + Serialize,
{
fn len(&self) -> usize {
self.vals.ts1s.len()
}
}
impl<NTY> Collector for MinMaxAvgWaveBinsCollector<NTY>
where
NTY: NumOps + Serialize,
{
type Input = MinMaxAvgWaveBins<NTY>;
type Output = MinMaxAvgWaveBinsCollectedResult<NTY>;
fn ingest(&mut self, src: &Self::Input) {
Appendable::append(&mut self.vals, src);
}
fn set_range_complete(&mut self) {
self.range_complete = true;
}
fn set_timed_out(&mut self) {
self.timed_out = true;
}
fn result(self) -> Result<Self::Output, Error> {
let ts0 = self.vals.ts1s.first().map_or(0, |k| *k / SEC);
let bin_count = self.vals.ts1s.len() as u32;
let mut tsoff: Vec<_> = self.vals.ts1s.iter().map(|k| *k - ts0 * SEC).collect();
if let Some(&k) = self.vals.ts2s.last() {
tsoff.push(k - ts0 * SEC);
}
let tsoff = tsoff;
let _iso: Vec<_> = tsoff
.iter()
.map(|&k| IsoDateTime(Utc.timestamp_nanos(k as i64)))
.collect();
let continue_at = if self.vals.ts1s.len() < self.bin_count_exp as usize {
match tsoff.last() {
Some(k) => Some(k.clone()),
None => Err(Error::with_msg("partial_content but no bin in result"))?,
}
} else {
None
};
let ret = MinMaxAvgWaveBinsCollectedResult {
ts0,
tsoff,
counts: self.vals.counts,
mins: self.vals.mins,
maxs: self.vals.maxs,
avgs: self.vals.avgs,
finalised_range: self.range_complete,
missing_bins: self.bin_count_exp - bin_count,
continue_at,
};
Ok(ret)
}
}
impl<NTY> Collectable for MinMaxAvgWaveBins<NTY>
where
NTY: NumOps + Serialize,
{
type Collector = MinMaxAvgWaveBinsCollector<NTY>;
fn new_collector(bin_count_exp: u32) -> Self::Collector {
Self::Collector::new(bin_count_exp)
}
}
pub struct MinMaxAvgWaveBinsAggregator<NTY> {
range: NanoRange,
count: u64,
min: Vec<NTY>,
max: Vec<NTY>,
sum: Vec<f32>,
sumc: u64,
}
impl<NTY> MinMaxAvgWaveBinsAggregator<NTY>
where
NTY: NumOps,
{
pub fn new(range: NanoRange, x_bin_count: usize) -> Self {
Self {
range,
count: 0,
min: vec![NTY::min_or_nan(); x_bin_count],
max: vec![NTY::max_or_nan(); x_bin_count],
sum: vec![0f32; x_bin_count],
sumc: 0,
}
}
}
impl<NTY> TimeBinnableTypeAggregator for MinMaxAvgWaveBinsAggregator<NTY>
where
NTY: NumOps,
{
type Input = MinMaxAvgWaveBins<NTY>;
type Output = MinMaxAvgWaveBins<NTY>;
fn range(&self) -> &NanoRange {
&self.range
}
fn ingest(&mut self, item: &Self::Input) {
for i1 in 0..item.ts1s.len() {
if item.ts2s[i1] <= self.range.beg {
continue;
} else if item.ts1s[i1] >= self.range.end {
continue;
} else {
// the input can contain bins where no events did fall into.
match &item.mins[i1] {
None => {}
Some(inp) => {
for (a, b) in self.min.iter_mut().zip(inp.iter()) {
if *b < *a {
*a = *b;
}
}
}
}
match &item.maxs[i1] {
None => {}
Some(inp) => {
for (a, b) in self.max.iter_mut().zip(inp.iter()) {
if *b > *a {
*a = *b;
}
}
}
}
match &item.avgs[i1] {
None => {}
Some(inp) => {
for (a, b) in self.sum.iter_mut().zip(inp.iter()) {
*a += *b;
}
}
}
self.sumc += 1;
self.count += item.counts[i1];
}
}
}
fn result(self) -> Self::Output {
if self.sumc == 0 {
Self::Output {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
mins: vec![None],
maxs: vec![None],
avgs: vec![None],
}
} else {
let avg = self.sum.iter().map(|j| *j / self.sumc as f32).collect();
Self::Output {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
mins: vec![Some(self.min)],
maxs: vec![Some(self.max)],
avgs: vec![Some(avg)],
}
}
}
}

View File

@@ -173,7 +173,7 @@ where
type Output = MinMaxAvgDim1Bins<NTY>;
type Aggregator = MinMaxAvgDim1BinsAggregator<NTY>;
fn aggregator(range: NanoRange) -> Self::Aggregator {
fn aggregator(range: NanoRange, bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range)
}
}
@@ -317,11 +317,12 @@ pub struct MinMaxAvgDim1BinsAggregator<NTY> {
}
impl<NTY> MinMaxAvgDim1BinsAggregator<NTY> {
pub fn new(range: NanoRange) -> Self {
pub fn new(range: NanoRange, bin_count: usize) -> Self {
Self {
range,
count: 0,
min: None,
// TODO get rid of Option
min: err::todoval(),
max: None,
sumc: 0,
sum: None,

View File

@@ -57,11 +57,7 @@ impl PreBinnedQuery {
.map_err(|e| Error::with_msg(format!("can not parse diskStatsEveryKb {:?}", e)))?;
let ret = Self {
patch: PreBinnedPatchCoord::new(bin_t_len, patch_t_len, patch_ix),
agg_kind: params
.get("aggKind")
.map_or(&format!("{}", AggKind::DimXBins1), |k| k)
.parse()
.map_err(|e| Error::with_msg(format!("can not parse aggKind {:?}", e)))?,
agg_kind: agg_kind_from_binning_scheme(&params).unwrap_or(AggKind::DimXBins1),
channel: channel_from_params(&params)?,
cache_usage: CacheUsage::from_params(&params)?,
disk_stats_every: ByteSize::kb(disk_stats_every),
@@ -76,11 +72,11 @@ impl PreBinnedQuery {
pub fn make_query_string(&self) -> String {
format!(
"{}&channelBackend={}&channelName={}&aggKind={}&cacheUsage={}&diskStatsEveryKb={}&reportError={}",
"{}&channelBackend={}&channelName={}&binningScheme={}&cacheUsage={}&diskStatsEveryKb={}&reportError={}",
self.patch.to_url_params_strings(),
self.channel.backend,
self.channel.name,
self.agg_kind,
binning_scheme_string(&self.agg_kind),
self.cache_usage,
self.disk_stats_every.bytes() / 1024,
self.report_error(),
@@ -201,6 +197,7 @@ impl BinnedQuery {
.parse()
.map_err(|e| Error::with_msg(format!("can not parse diskStatsEveryKb {:?}", e)))?;
let ret = Self {
channel: channel_from_params(&params)?,
range: NanoRange {
beg: beg_date.parse::<DateTime<Utc>>()?.to_nanos(),
end: end_date.parse::<DateTime<Utc>>()?.to_nanos(),
@@ -210,12 +207,7 @@ impl BinnedQuery {
.ok_or(Error::with_msg("missing binCount"))?
.parse()
.map_err(|e| Error::with_msg(format!("can not parse binCount {:?}", e)))?,
agg_kind: params
.get("aggKind")
.map_or(&format!("{}", AggKind::DimXBins1), |k| k)
.parse()
.map_err(|e| Error::with_msg(format!("can not parse aggKind {:?}", e)))?,
channel: channel_from_params(&params)?,
agg_kind: agg_kind_from_binning_scheme(&params).unwrap_or(AggKind::DimXBins1),
cache_usage: CacheUsage::from_params(&params)?,
disk_stats_every: ByteSize::kb(disk_stats_every),
report_error: params
@@ -292,7 +284,7 @@ impl BinnedQuery {
pub fn url(&self, host: &HostPort) -> String {
let date_fmt = "%Y-%m-%dT%H:%M:%S.%3fZ";
format!(
"http://{}:{}/api/4/binned?cacheUsage={}&channelBackend={}&channelName={}&binCount={}&begDate={}&endDate={}&diskStatsEveryKb={}&timeout={}&abortAfterBinCount={}",
"http://{}:{}/api/4/binned?cacheUsage={}&channelBackend={}&channelName={}&binCount={}&begDate={}&endDate={}&binningScheme={}&diskStatsEveryKb={}&timeout={}&abortAfterBinCount={}",
host.host,
host.port,
self.cache_usage,
@@ -301,9 +293,35 @@ impl BinnedQuery {
self.bin_count,
Utc.timestamp_nanos(self.range.beg as i64).format(date_fmt),
Utc.timestamp_nanos(self.range.end as i64).format(date_fmt),
binning_scheme_string(&self.agg_kind),
self.disk_stats_every.bytes() / 1024,
self.timeout.as_millis(),
self.abort_after_bin_count,
)
}
}
fn binning_scheme_string(agg_kind: &AggKind) -> String {
match agg_kind {
AggKind::Plain => "fullValue".into(),
AggKind::DimXBins1 => "toScalarX".into(),
AggKind::DimXBinsN(n) => format!("binnedXcount{}", n),
}
}
fn agg_kind_from_binning_scheme(params: &BTreeMap<String, String>) -> Result<AggKind, Error> {
let key = "binningScheme";
let s = params
.get(key)
.map_or(Err(Error::with_msg(format!("can not find {}", key))), |k| Ok(k))?;
let ret = if s == "fullValue" {
AggKind::Plain
} else if s == "toScalarX" {
AggKind::DimXBins1
} else if s.starts_with("binnedXcount") {
AggKind::DimXBinsN(s[12..].parse()?)
} else {
return Err(Error::with_msg("can not extract binningScheme"));
};
Ok(ret)
}

View File

@@ -295,7 +295,7 @@ where
type Output = MinMaxAvgBins<NTY>;
type Aggregator = EventValuesAggregator<NTY>;
fn aggregator(range: NanoRange) -> Self::Aggregator {
fn aggregator(range: NanoRange, _bin_count: usize) -> Self::Aggregator {
Self::Aggregator::new(range)
}
}

View File

@@ -1,4 +1,4 @@
use crate::agg::enp::{WaveEvents, XBinnedScalarEvents};
use crate::agg::enp::{WaveEvents, XBinnedScalarEvents, XBinnedWaveEvents};
use crate::agg::eventbatch::MinMaxAvgScalarEventBatch;
use crate::agg::scalarbinbatch::MinMaxAvgScalarBinBatch;
use crate::agg::streams::StreamItem;
@@ -104,6 +104,13 @@ where
const FRAME_TYPE_ID: u32 = 0x800 + NTY::SUB;
}
impl<NTY> FrameType for Sitemty<XBinnedWaveEvents<NTY>>
where
NTY: SubFrId,
{
const FRAME_TYPE_ID: u32 = 0x800 + NTY::SUB;
}
pub trait ProvidesFrameType {
fn frame_type_id(&self) -> u32;
}
@@ -160,6 +167,15 @@ where
}
}
impl<NTY> Framable for Sitemty<XBinnedWaveEvents<NTY>>
where
NTY: NumOps + Serialize,
{
fn make_frame(&self) -> Result<BytesMut, Error> {
make_frame(self)
}
}
pub fn make_frame<FT>(item: &FT) -> Result<BytesMut, Error>
where
FT: FrameType + Serialize,

View File

@@ -96,18 +96,14 @@ impl<E: Into<Error>> From<(E, OwnedWriteHalf)> for ConnErr {
}
}
// returns Pin<Box<dyn Stream<Item = Sitemty<<ENP as EventsNodeProcessor>::Output>> + Send>>
fn make_num_pipeline_stream_evs<NTY, END, EVS, ENP>(
event_value_shape: EVS,
events_node_proc: ENP,
event_blobs: EventBlobsComplete,
) -> Pin<Box<dyn Stream<Item = Box<dyn Framable>> + Send>>
where
NTY: NumOps + NumFromBytes<NTY, END> + 'static,
END: Endianness + 'static,
// TODO
// Can this work?
EVS: EventValueShape<NTY, END> + EventValueFromBytes<NTY, END> + 'static,
ENP: EventsNodeProcessor<Input = <EVS as EventValueFromBytes<NTY, END>>::Output>,
Sitemty<<ENP as EventsNodeProcessor>::Output>: Framable + 'static,
@@ -118,7 +114,7 @@ where
Ok(item) => match item {
StreamItem::DataItem(item) => match item {
RangeCompletableItem::Data(item) => {
let item = <ENP as EventsNodeProcessor>::process(item);
let item = events_node_proc.process(item);
Ok(StreamItem::DataItem(RangeCompletableItem::Data(item)))
}
RangeCompletableItem::RangeComplete => Ok(StreamItem::DataItem(RangeCompletableItem::RangeComplete)),
@@ -133,30 +129,44 @@ where
}
macro_rules! pipe4 {
($nty:ident, $end:ident, $evs:ident, $evsv:expr, $agg_kind:expr, $event_blobs:expr) => {
($nty:ident, $end:ident, $shape:expr, $evs:ident, $evsv:expr, $agg_kind:expr, $event_blobs:expr) => {
match $agg_kind {
AggKind::DimXBins1 => make_num_pipeline_stream_evs::<
$nty,
$end,
$evs<$nty>,
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToSingleBin,
//<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToSingleBin,
_,
//Identity<$nty>,
>($evsv, $event_blobs),
>(
$evsv,
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToSingleBin::create($shape),
$event_blobs,
),
AggKind::DimXBinsN(_) => make_num_pipeline_stream_evs::<
$nty,
$end,
$evs<$nty>,
// TODO must pass on the requested number of bins:
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToNBins,
//<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToNBins,
_,
//WaveXBinner<$nty>,
>($evsv, $event_blobs),
>(
$evsv,
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggToNBins::create($shape),
$event_blobs,
),
AggKind::Plain => make_num_pipeline_stream_evs::<
$nty,
$end,
$evs<$nty>,
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggPlain,
//<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggPlain,
_,
//WaveXBinner<$nty>,
>($evsv, $event_blobs),
>(
$evsv,
<$evs<$nty> as EventValueShape<$nty, $end>>::NumXAggPlain::create($shape),
$event_blobs,
),
}
};
}
@@ -168,6 +178,7 @@ macro_rules! pipe3 {
pipe4!(
$nty,
$end,
$shape,
EventValuesDim0Case,
EventValuesDim0Case::<$nty>::new(),
$agg_kind,
@@ -181,6 +192,7 @@ macro_rules! pipe3 {
pipe4!(
$nty,
$end,
$shape,
EventValuesDim1Case,
EventValuesDim1Case::<$nty>::new(n),
$agg_kind,
@@ -258,6 +270,7 @@ async fn events_conn_handler_inner_try(
return Err((Error::with_msg("json parse error"), netout))?;
}
};
info!("---------------------------------------------------\nevq {:?}", evq);
match dbconn::channel_exists(&evq.channel, &node_config).await {
Ok(_) => (),
Err(e) => return Err((e, netout))?,