Rename modules

This commit is contained in:
Dominik Werder
2022-06-16 19:41:45 +02:00
parent df2ce201bd
commit a8c7f281fc
8 changed files with 42 additions and 42 deletions

View File

@@ -7,7 +7,7 @@ use err::Error;
use futures_util::{StreamExt, TryStreamExt};
use http::StatusCode;
use hyper::Body;
use items::minmaxavgbins::MinMaxAvgBins;
use items::binsdim0::MinMaxAvgDim0Bins;
use items::{FrameType, RangeCompletableItem, Sitemty, StatsItem, StreamItem, SubFrId, WithLen};
use netpod::query::{BinnedQuery, CacheUsage};
use netpod::{log::*, AppendToUrl};
@@ -102,7 +102,7 @@ where
let channel = Channel {
backend: channel_backend.into(),
name: channel_name.into(),
series:None,
series: None,
};
let range = NanoRange::from_date_time(beg_date, end_date);
let mut query = BinnedQuery::new(channel, range, bin_count, agg_kind);
@@ -195,10 +195,10 @@ where
None
}
StreamItem::DataItem(frame) => {
if frame.tyid() != <Sitemty<MinMaxAvgBins<NTY>> as FrameType>::FRAME_TYPE_ID {
if frame.tyid() != <Sitemty<MinMaxAvgDim0Bins<NTY>> as FrameType>::FRAME_TYPE_ID {
error!("test receives unexpected tyid {:x}", frame.tyid());
}
match bincode::deserialize::<Sitemty<MinMaxAvgBins<NTY>>>(frame.buf()) {
match bincode::deserialize::<Sitemty<MinMaxAvgDim0Bins<NTY>>>(frame.buf()) {
Ok(item) => match item {
Ok(item) => match item {
StreamItem::Log(item) => {

View File

@@ -17,7 +17,7 @@ use std::marker::PhantomData;
use tokio::fs::File;
#[derive(Clone, Serialize, Deserialize)]
pub struct MinMaxAvgBins<NTY> {
pub struct MinMaxAvgDim0Bins<NTY> {
pub ts1s: Vec<u64>,
pub ts2s: Vec<u64>,
pub counts: Vec<u64>,
@@ -27,14 +27,14 @@ pub struct MinMaxAvgBins<NTY> {
pub avgs: Vec<Option<f32>>,
}
impl<NTY> SitemtyFrameType for MinMaxAvgBins<NTY>
impl<NTY> SitemtyFrameType for MinMaxAvgDim0Bins<NTY>
where
NTY: SubFrId,
{
const FRAME_TYPE_ID: u32 = crate::MIN_MAX_AVG_BINS + NTY::SUB;
}
impl<NTY> fmt::Debug for MinMaxAvgBins<NTY>
impl<NTY> fmt::Debug for MinMaxAvgDim0Bins<NTY>
where
NTY: fmt::Debug,
{
@@ -53,7 +53,7 @@ where
}
}
impl<NTY> MinMaxAvgBins<NTY> {
impl<NTY> MinMaxAvgDim0Bins<NTY> {
pub fn empty() -> Self {
Self {
ts1s: vec![],
@@ -66,7 +66,7 @@ impl<NTY> MinMaxAvgBins<NTY> {
}
}
impl<NTY> FitsInside for MinMaxAvgBins<NTY> {
impl<NTY> FitsInside for MinMaxAvgDim0Bins<NTY> {
fn fits_inside(&self, range: NanoRange) -> Fits {
if self.ts1s.is_empty() {
Fits::Empty
@@ -90,7 +90,7 @@ impl<NTY> FitsInside for MinMaxAvgBins<NTY> {
}
}
impl<NTY> FilterFittingInside for MinMaxAvgBins<NTY> {
impl<NTY> FilterFittingInside for MinMaxAvgDim0Bins<NTY> {
fn filter_fitting_inside(self, fit_range: NanoRange) -> Option<Self> {
match self.fits_inside(fit_range) {
Fits::Inside | Fits::PartlyGreater | Fits::PartlyLower | Fits::PartlyLowerAndGreater => Some(self),
@@ -99,7 +99,7 @@ impl<NTY> FilterFittingInside for MinMaxAvgBins<NTY> {
}
}
impl<NTY> RangeOverlapInfo for MinMaxAvgBins<NTY> {
impl<NTY> RangeOverlapInfo for MinMaxAvgDim0Bins<NTY> {
fn ends_before(&self, range: NanoRange) -> bool {
match self.ts2s.last() {
Some(&ts) => ts <= range.beg,
@@ -122,7 +122,7 @@ impl<NTY> RangeOverlapInfo for MinMaxAvgBins<NTY> {
}
}
impl<NTY> TimeBins for MinMaxAvgBins<NTY>
impl<NTY> TimeBins for MinMaxAvgDim0Bins<NTY>
where
NTY: NumOps,
{
@@ -135,13 +135,13 @@ where
}
}
impl<NTY> WithLen for MinMaxAvgBins<NTY> {
impl<NTY> WithLen for MinMaxAvgDim0Bins<NTY> {
fn len(&self) -> usize {
self.ts1s.len()
}
}
impl<NTY> Appendable for MinMaxAvgBins<NTY>
impl<NTY> Appendable for MinMaxAvgDim0Bins<NTY>
where
NTY: NumOps,
{
@@ -159,7 +159,7 @@ where
}
}
impl<NTY> ReadableFromFile for MinMaxAvgBins<NTY>
impl<NTY> ReadableFromFile for MinMaxAvgDim0Bins<NTY>
where
NTY: NumOps,
{
@@ -174,11 +174,11 @@ where
}
}
impl<NTY> TimeBinnableType for MinMaxAvgBins<NTY>
impl<NTY> TimeBinnableType for MinMaxAvgDim0Bins<NTY>
where
NTY: NumOps,
{
type Output = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
type Aggregator = MinMaxAvgBinsAggregator<NTY>;
fn aggregator(range: NanoRange, x_bin_count: usize, do_time_weight: bool) -> Self::Aggregator {
@@ -190,7 +190,7 @@ where
}
}
impl<NTY> ToJsonResult for Sitemty<MinMaxAvgBins<NTY>>
impl<NTY> ToJsonResult for Sitemty<MinMaxAvgDim0Bins<NTY>>
where
NTY: NumOps,
{
@@ -236,7 +236,7 @@ pub struct MinMaxAvgBinsCollector<NTY> {
bin_count_exp: u32,
timed_out: bool,
range_complete: bool,
vals: MinMaxAvgBins<NTY>,
vals: MinMaxAvgDim0Bins<NTY>,
_m1: PhantomData<NTY>,
}
@@ -246,7 +246,7 @@ impl<NTY> MinMaxAvgBinsCollector<NTY> {
bin_count_exp,
timed_out: false,
range_complete: false,
vals: MinMaxAvgBins::<NTY>::empty(),
vals: MinMaxAvgDim0Bins::<NTY>::empty(),
_m1: PhantomData,
}
}
@@ -265,7 +265,7 @@ impl<NTY> Collector for MinMaxAvgBinsCollector<NTY>
where
NTY: NumOps + Serialize,
{
type Input = MinMaxAvgBins<NTY>;
type Input = MinMaxAvgDim0Bins<NTY>;
type Output = MinMaxAvgBinsCollectedResult<NTY>;
fn ingest(&mut self, src: &Self::Input) {
@@ -315,7 +315,7 @@ where
}
}
impl<NTY> Collectable for MinMaxAvgBins<NTY>
impl<NTY> Collectable for MinMaxAvgDim0Bins<NTY>
where
NTY: NumOps + Serialize,
{
@@ -352,8 +352,8 @@ impl<NTY> TimeBinnableTypeAggregator for MinMaxAvgBinsAggregator<NTY>
where
NTY: NumOps,
{
type Input = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgBins<NTY>;
type Input = MinMaxAvgDim0Bins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
fn range(&self) -> &NanoRange {
&self.range

View File

@@ -1,9 +1,9 @@
pub mod binnedevents;
pub mod binsdim0;
pub mod binsdim1;
pub mod eventsitem;
pub mod frame;
pub mod inmem;
pub mod minmaxavgbins;
pub mod minmaxavgdim1bins;
pub mod numops;
pub mod plainevents;
pub mod scalarevents;

View File

@@ -1,4 +1,4 @@
use crate::minmaxavgbins::MinMaxAvgBins;
use crate::binsdim0::MinMaxAvgDim0Bins;
use crate::numops::NumOps;
use crate::streams::{Collectable, Collector};
use crate::{
@@ -217,7 +217,7 @@ impl<NTY> TimeBinnableType for ScalarEvents<NTY>
where
NTY: NumOps,
{
type Output = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
type Aggregator = EventValuesAggregator<NTY>;
fn aggregator(range: NanoRange, x_bin_count: usize, do_time_weight: bool) -> Self::Aggregator {
@@ -442,13 +442,13 @@ where
}
}
fn result_reset_unweight(&mut self, range: NanoRange, _expand: bool) -> MinMaxAvgBins<NTY> {
fn result_reset_unweight(&mut self, range: NanoRange, _expand: bool) -> MinMaxAvgDim0Bins<NTY> {
let avg = if self.sumc == 0 {
None
} else {
Some(self.sum / self.sumc as f32)
};
let ret = MinMaxAvgBins {
let ret = MinMaxAvgDim0Bins {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
@@ -466,7 +466,7 @@ where
ret
}
fn result_reset_time_weight(&mut self, range: NanoRange, expand: bool) -> MinMaxAvgBins<NTY> {
fn result_reset_time_weight(&mut self, range: NanoRange, expand: bool) -> MinMaxAvgDim0Bins<NTY> {
// TODO check callsite for correct expand status.
if true || expand {
debug!("result_reset_time_weight calls apply_event_time_weight");
@@ -478,7 +478,7 @@ where
let sc = self.range.delta() as f32 * 1e-9;
Some(self.sum / sc)
};
let ret = MinMaxAvgBins {
let ret = MinMaxAvgDim0Bins {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
@@ -502,7 +502,7 @@ where
NTY: NumOps,
{
type Input = ScalarEvents<NTY>;
type Output = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
fn range(&self) -> &NanoRange {
&self.range

View File

@@ -1,4 +1,4 @@
use crate::minmaxavgdim1bins::MinMaxAvgDim1Bins;
use crate::binsdim1::MinMaxAvgDim1Bins;
use crate::numops::NumOps;
use crate::xbinnedscalarevents::XBinnedScalarEvents;
use crate::xbinnedwaveevents::XBinnedWaveEvents;

View File

@@ -1,4 +1,4 @@
use crate::minmaxavgbins::MinMaxAvgBins;
use crate::binsdim0::MinMaxAvgDim0Bins;
use crate::numops::NumOps;
use crate::streams::{Collectable, Collector};
use crate::{
@@ -175,7 +175,7 @@ impl<NTY> TimeBinnableType for XBinnedScalarEvents<NTY>
where
NTY: NumOps,
{
type Output = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
type Aggregator = XBinnedScalarEventsAggregator<NTY>;
fn aggregator(range: NanoRange, x_bin_count: usize, do_time_weight: bool) -> Self::Aggregator {
@@ -315,13 +315,13 @@ where
}
}
fn result_reset_unweight(&mut self, range: NanoRange, _expand: bool) -> MinMaxAvgBins<NTY> {
fn result_reset_unweight(&mut self, range: NanoRange, _expand: bool) -> MinMaxAvgDim0Bins<NTY> {
let avg = if self.sumc == 0 {
None
} else {
Some(self.sum / self.sumc as f32)
};
let ret = MinMaxAvgBins {
let ret = MinMaxAvgDim0Bins {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
@@ -339,7 +339,7 @@ where
ret
}
fn result_reset_time_weight(&mut self, range: NanoRange, expand: bool) -> MinMaxAvgBins<NTY> {
fn result_reset_time_weight(&mut self, range: NanoRange, expand: bool) -> MinMaxAvgDim0Bins<NTY> {
// TODO check callsite for correct expand status.
if true || expand {
self.apply_event_time_weight(self.range.end);
@@ -348,7 +348,7 @@ where
let sc = self.range.delta() as f32 * 1e-9;
Some(self.sum / sc)
};
let ret = MinMaxAvgBins {
let ret = MinMaxAvgDim0Bins {
ts1s: vec![self.range.beg],
ts2s: vec![self.range.end],
counts: vec![self.count],
@@ -372,7 +372,7 @@ where
NTY: NumOps,
{
type Input = XBinnedScalarEvents<NTY>;
type Output = MinMaxAvgBins<NTY>;
type Output = MinMaxAvgDim0Bins<NTY>;
fn range(&self) -> &NanoRange {
&self.range

View File

@@ -1,4 +1,4 @@
use crate::minmaxavgdim1bins::MinMaxAvgDim1Bins;
use crate::binsdim1::MinMaxAvgDim1Bins;
use crate::numops::NumOps;
use crate::streams::{Collectable, Collector};
use crate::{