WIP on dim-0

This commit is contained in:
Dominik Werder
2021-04-08 18:03:31 +02:00
parent 018b44c9f6
commit 3b062b2f5c

View File

@@ -63,6 +63,54 @@ impl AggregatorTdim for () {
}
pub struct ValuesDim0 {
tss: Vec<u64>,
values: Vec<Vec<f32>>,
}
impl std::fmt::Debug for ValuesDim0 {
fn fmt(&self, fmt: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(fmt, "count {} tsA {:?} tsB {:?}", self.tss.len(), self.tss.first(), self.tss.last())
}
}
impl AggregatableXdim1Bin for ValuesDim1 {
type Output = MinMaxAvgScalarEventBatch;
fn into_agg(self) -> Self::Output {
let mut ret = MinMaxAvgScalarEventBatch {
tss: Vec::with_capacity(self.tss.len()),
mins: Vec::with_capacity(self.tss.len()),
maxs: Vec::with_capacity(self.tss.len()),
avgs: Vec::with_capacity(self.tss.len()),
};
for i1 in 0..self.tss.len() {
let ts = self.tss[i1];
let mut min = f32::MAX;
let mut max = f32::MIN;
let mut sum = 0f32;
let vals = &self.values[i1];
assert!(vals.len() > 0);
for i2 in 0..vals.len() {
let v = vals[i2];
//info!("value {} {} {}", i1, i2, v);
min = min.min(v);
max = max.max(v);
sum += v;
}
if min == f32::MAX { min = f32::NAN; }
if max == f32::MIN { max = f32::NAN; }
ret.tss.push(ts);
ret.mins.push(min);
ret.maxs.push(max);
ret.avgs.push(sum / vals.len() as f32);
}
ret
}
}
pub struct ValuesDim1 {
tss: Vec<u64>,
values: Vec<Vec<f32>>,
@@ -74,7 +122,7 @@ impl std::fmt::Debug for ValuesDim1 {
}
}
impl AggregatableXdim1Bin for ValuesDim1 {
impl AggregatableXdim1Bin for ValuesDim0 {
type Output = MinMaxAvgScalarEventBatch;
fn into_agg(self) -> Self::Output {
@@ -349,15 +397,89 @@ impl AggregatorTdim for MinMaxAvgScalarBinSingleAggregator {
pub struct Dim1F32Stream<S>
where S: Stream<Item=Result<EventFull, Error>>
{
pub struct Dim0F32Stream<S> where S: Stream<Item=Result<EventFull, Error>> {
inp: S,
}
impl<S> Stream for Dim1F32Stream<S>
where S: Stream<Item=Result<EventFull, Error>> + Unpin
{
impl<S> Stream for Dim0F32Stream<S> where S: Stream<Item=Result<EventFull, Error>> + Unpin {
type Item = Result<ValuesDim0, Error>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
use Poll::*;
match self.inp.poll_next_unpin(cx) {
Ready(Some(Ok(k))) => {
let mut ret = ValuesDim1 {
tss: vec![],
values: vec![],
};
use ScalarType::*;
for i1 in 0..k.tss.len() {
// TODO iterate sibling arrays after single bounds check
let ty = &k.scalar_types[i1];
let decomp = k.decomps[i1].as_ref().unwrap();
match ty {
F64 => {
const BY: usize = 8;
// do the conversion
// TODO only a scalar!
todo!();
let n1 = decomp.len();
assert!(n1 % ty.bytes() as usize == 0);
let ele_count = n1 / ty.bytes() as usize;
let mut j = Vec::with_capacity(ele_count);
// this is safe for ints and floats
unsafe { j.set_len(ele_count); }
let mut p1 = 0;
for i1 in 0..ele_count {
let u = unsafe {
let mut r = [0u8; BY];
std::ptr::copy_nonoverlapping(&decomp[p1], r.as_mut_ptr(), BY);
f64::from_be_bytes(r)
//f64::from_be_bytes(std::mem::transmute::<_, [u8; 8]>(&decomp[p1]))
};
j[i1] = u as f32;
p1 += BY;
}
ret.tss.push(k.tss[i1]);
ret.values.push(j);
},
_ => todo!()
}
}
Ready(Some(Ok(todo!())))
}
Ready(Some(Err(e))) => Ready(Some(Err(e))),
Ready(None) => Ready(None),
Pending => Pending,
}
}
}
pub trait IntoDim0F32Stream {
fn into_dim_0_f32_stream(self) -> Dim0F32Stream<Self> where Self: Stream<Item=Result<EventFull, Error>> + Sized;
}
impl<T> IntoDim0F32Stream for T where T: Stream<Item=Result<EventFull, Error>> {
fn into_dim_0_f32_stream(self) -> Dim0F32Stream<T> {
Dim0F32Stream {
inp: self,
}
}
}
pub struct Dim1F32Stream<S> where S: Stream<Item=Result<EventFull, Error>> {
inp: S,
}
impl<S> Stream for Dim1F32Stream<S> where S: Stream<Item=Result<EventFull, Error>> + Unpin {
type Item = Result<ValuesDim1, Error>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Option<Self::Item>> {
@@ -411,17 +533,12 @@ where S: Stream<Item=Result<EventFull, Error>> + Unpin
}
pub trait IntoDim1F32Stream {
fn into_dim_1_f32_stream(self) -> Dim1F32Stream<Self>
where Self: Sized,
Self: Stream<Item=Result<EventFull, Error>>;
fn into_dim_1_f32_stream(self) -> Dim1F32Stream<Self> where Self: Stream<Item=Result<EventFull, Error>> + Sized;
}
impl<T> IntoDim1F32Stream for T
where T: Stream<Item=Result<EventFull, Error>>
{
impl<T> IntoDim1F32Stream for T where T: Stream<Item=Result<EventFull, Error>> {
fn into_dim_1_f32_stream(self) -> Dim1F32Stream<T>
{
fn into_dim_1_f32_stream(self) -> Dim1F32Stream<T> {
Dim1F32Stream {
inp: self,
}
@@ -647,6 +764,52 @@ const WEEK: u64 = DAY * 7;
#[test]
fn agg_x_dim_0() {
crate::run(async { agg_x_dim_0_inner().await; Ok(()) }).unwrap();
}
async fn agg_x_dim_0_inner() {
let query = netpod::AggQuerySingleChannel {
ksprefix: "daq_swissfel".into(),
keyspace: 2,
channel: netpod::Channel {
name: "S10BC01-DBAM070:EOM1_T1".into(),
backend: "sf-databuffer".into(),
},
timebin: 18723,
tb_file_count: 1,
split: 12,
tbsize: 1000 * 60 * 60 * 24,
buffer_size: 1024 * 4,
};
let bin_count = 20;
let ts1 = query.timebin as u64 * query.tbsize as u64 * MS;
let ts2 = ts1 + HOUR * 24;
let fut1 = crate::EventBlobsComplete::new(&query)
.into_dim_1_f32_stream()
//.take(1000)
.map(|q| {
if let Ok(ref k) = q {
//info!("vals: {:?}", k);
}
q
})
.into_binned_x_bins_1()
.map(|k| {
//info!("after X binning {:?}", k.as_ref().unwrap());
k
})
.into_binned_t(BinSpecDimT::over_range(bin_count, ts1, ts2))
.map(|k| {
info!("after T binning {:?}", k.as_ref().unwrap());
k
})
.for_each(|k| ready(()));
fut1.await;
}
#[test]
fn agg_x_dim_1() {
crate::run(async { agg_x_dim_1_inner().await; Ok(()) }).unwrap();