Files
2020-10-13 11:19:38 +02:00

139 lines
4.6 KiB
Python

from logging import getLogger
from cam_server.pipeline.data_processing import functions
import json
import numpy
import scipy.signal
import scipy.optimize
import epics
_logger = getLogger(__name__)
output_pv, center_pv, fwhm_pv, ymin_pv, ymax_pv, axis_pv = None, None, None, None, None, None
roi = [0, 0]
initialized = False
def initialize(parameters):
global ymin_pv, ymax_pv, axis_pv, output_pv, center_pv, fwhm_pv
epics_pv_name_prefix = parameters["camera_name"]
_logger.warning("epics_pv_name_prefix: " + str(epics_pv_name_prefix))
output_pv_name = epics_pv_name_prefix + ":SPECTRUM_Y"
center_pv_name = epics_pv_name_prefix + ":SPECTRUM_CENTER"
fwhm_pv_name = epics_pv_name_prefix + ":SPECTRUM_FWHM"
ymin_pv_name = epics_pv_name_prefix + ":SPC_ROI_YMIN"
ymax_pv_name = epics_pv_name_prefix + ":SPC_ROI_YMAX"
axis_pv_name = epics_pv_name_prefix + ":SPECTRUM_X"
epics.ca.clear_cache()
output_pv = epics.PV(output_pv_name)
center_pv = epics.PV(center_pv_name)
fwhm_pv = epics.PV(fwhm_pv_name)
ymin_pv = epics.PV(ymin_pv_name)
ymax_pv = epics.PV(ymax_pv_name)
axis_pv = epics.PV(axis_pv_name)
ymin_pv.wait_for_connection()
ymax_pv.wait_for_connection()
axis_pv.wait_for_connection()
_logger.warning("output_pv_name: " + str(output_pv_name))
def process_image(image, pulse_id, timestamp, x_axis, y_axis, parameters, bsdata=None):
global roi, initialized
global ymin_pv, ymax_pv, axis_pv, output_pv, center_pv, fwhm_pv
if not initialized:
initialize(parameters)
initialized = True
processed_data = dict()
epics_pv_name_prefix = parameters["camera_name"]
if ymin_pv and ymin_pv.connected:
roi[0] = ymin_pv.value
if ymax_pv and ymax_pv.connected:
roi[1] = ymax_pv.value
if axis_pv and axis_pv.connected:
axis = axis_pv.value
else:
axis = None
if axis is None or len(axis) != image.shape[1]:
_logger.warning("Invalid energy axis")
return None
#processed_data[epics_pv_name_prefix + ":processing_parameters"] = json.dumps({"roi": roi, "background": parameters['background']})
parameters["roi"] = roi
processed_data[epics_pv_name_prefix + ":processing_parameters"] = json.dumps(parameters)
processing_image = image
nrows, ncols = processing_image.shape
"""
# validate background data
background_image = parameters.get('background_data')
if isinstance(background_image, numpy.ndarray):
if background_image.shape != processing_image.shape:
background_image = None
else:
background_image = None
"""
# crop the image in y direction
ymin, ymax = roi
if nrows >= ymax > ymin >= 0:
if (nrows != ymax) or (ymin != 0):
processing_image = processing_image[int(ymin):int(ymax), :]
"""
if background_image is not None:
background_image = background_image[ymin:ymax, :]
# remove the background and collapse in y direction to get the spectrum
if background_image is not None:
spectrum = functions.get_spectrum(processing_image, background_image)
else:
"""
spectrum = processing_image.sum(0, 'uint32')
# smooth the spectrum with savgol filter with 51 window size and 3rd order polynomial
smoothed_spectrum = scipy.signal.savgol_filter(spectrum, 51, 3)
# check wether spectrum has only noise. the average counts per pixel at the peak
# should be larger than 1.5 to be considered as having real signals.
minimum, maximum = smoothed_spectrum.min(), smoothed_spectrum.max()
amplitude = maximum - minimum
skip = True
if amplitude > nrows * 1.5:
skip = False
# gaussian fitting
offset, amplitude, center, sigma = functions.gauss_fit_psss(smoothed_spectrum[::2], axis[::2],
offset=minimum, amplitude=amplitude, skip=skip)
# outputs
processed_data[epics_pv_name_prefix + ":SPECTRUM_Y"] = spectrum
processed_data[epics_pv_name_prefix + ":SPECTRUM_X"] = axis
processed_data[epics_pv_name_prefix + ":SPECTRUM_CENTER"] = center
processed_data[epics_pv_name_prefix + ":SPECTRUM_FWHM"] = 2.355 * sigma
if output_pv and output_pv.connected:
output_pv.put(processed_data[epics_pv_name_prefix + ":SPECTRUM_Y"])
_logger.debug("caput on %s for pulse_id %s", output_pv, pulse_id)
if center_pv and center_pv.connected:
center_pv.put(processed_data[epics_pv_name_prefix + ":SPECTRUM_CENTER"])
if fwhm_pv and fwhm_pv.connected:
fwhm_pv.put(processed_data[epics_pv_name_prefix + ":SPECTRUM_FWHM"])
return processed_data