Merge pull request 'added AP and KM macros to main bec from x10sa production branch' (#7) from x10sa_production_20260112T142809 into main
All checks were successful
CI for pxii_bec / test (push) Successful in 31s
All checks were successful
CI for pxii_bec / test (push) Successful in 31s
Reviewed-on: #7
This commit was merged in pull request #7.
This commit is contained in:
1522
pxii_bec/macros/APscripts.py
Executable file
1522
pxii_bec/macros/APscripts.py
Executable file
File diff suppressed because it is too large
Load Diff
320
pxii_bec/macros/Undu_Helpers.py
Executable file
320
pxii_bec/macros/Undu_Helpers.py
Executable file
@@ -0,0 +1,320 @@
|
||||
#!/usr/bin/env python
|
||||
from pylab import *
|
||||
import sys, os
|
||||
|
||||
# import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import scipy.interpolate
|
||||
from scipy.optimize import curve_fit
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
|
||||
|
||||
|
||||
def fit_harm(harm, n, order):
|
||||
x = harm[0, :].astype(float)
|
||||
y = harm[1, :].astype(
|
||||
float
|
||||
) ## else funny object that might contain funny strings ...
|
||||
coeff = np.polyfit(x, y, order) # 3 in general i.e., 4 params
|
||||
polynomial = np.poly1d(coeff)
|
||||
x_fit = np.linspace(min(x), max(x), 100)
|
||||
y_fit = polynomial(x_fit)
|
||||
print("Polynomial coefficients of the harmonic: ", n, coeff)
|
||||
plot(x_fit, y_fit, color="blue")
|
||||
|
||||
return (
|
||||
x / n,
|
||||
y,
|
||||
) # get the normalized energy gap relation for fitting the Halbach coeff
|
||||
|
||||
|
||||
######### simple exp fit ############
|
||||
def exponential_func0(x, a, b, c):
|
||||
# fit 3 params a,b,c
|
||||
|
||||
return a * np.exp(b * x + c * x ** 2)
|
||||
|
||||
|
||||
######### inverse exp fit ############
|
||||
def exponential_func1(x, a, b, c):
|
||||
# fit 3 params a,b,c
|
||||
|
||||
return 1 / (1 + (a * np.exp(b * x + c * x ** 2)))
|
||||
|
||||
|
||||
######### inverse exp fit plus E_max ############
|
||||
def exponential_func2(x, a, b, c, d):
|
||||
# fit 4 params a,b,c, e.g., fit energy of storage ring as well
|
||||
return d / (1 + (a * np.exp(b * x + c * x ** 2)))
|
||||
|
||||
|
||||
##################################
|
||||
|
||||
|
||||
def return_harmon():
|
||||
# from 3rd to 21th Energy range from 6 keV to 30 keV
|
||||
# harmonics, July 2025
|
||||
import numpy as np
|
||||
|
||||
nharm = 13
|
||||
h = [np.array([]) for _ in range(nharm + 1)]
|
||||
h[0] = np.array([0])
|
||||
h[1] = np.array([0])
|
||||
h[2] = np.array([0])
|
||||
h[3] = np.array([1.07141725, -0.52834258]) # 3rd harmon
|
||||
h[4] = np.array([0.007111, -0.13678409, 1.52295567, -1.06882785])
|
||||
h[5] = np.array([0.00315051, -0.0766359, 1.13107469, -0.86442062])
|
||||
|
||||
h[6] = np.array([0.00162862, -0.04452336, 0.82948259, -0.37329674])
|
||||
h[7] = np.array([0.00080764, -0.02418882, 0.59212947, 0.15702886])
|
||||
h[8] = np.array([1.16699242e-03, -4.68207543e-02, 9.43972396e-01, -1.94201019e00])
|
||||
h[9] = np.array([4.84194444e-04, -2.01064762e-02, 5.55141139e-01, -3.81800667e-01])
|
||||
h[10] = np.array([2.11583333e-04, -8.03503571e-03, 3.43141595e-01, 6.02318000e-01])
|
||||
h[11] = np.array([3.34391667e-03, -1.84053357e-01, 3.58338994e00, -1.93640241e01])
|
||||
h[12] = np.array([3.20520798e-05, 2.39253145e-03, 8.09198503e-02, 2.22897377e00])
|
||||
h[13] = np.array([0.00278744, 0.07979874, 2.05143916])
|
||||
|
||||
# fitpar_u19 = np.array([ 2.17078531, 0.519452, -0.00720255]) # measured from U19
|
||||
|
||||
return h
|
||||
|
||||
def plot_harmon(e_start, e_end, h_no, pr_out = False):
|
||||
|
||||
enarr= np.arange(e_start, e_end+1, 0.5)
|
||||
|
||||
h_all = return_harmon()
|
||||
h=h_all[h_no]
|
||||
polynomial = np.poly1d(h)
|
||||
gaps = polynomial(enarr)
|
||||
|
||||
if (pr_out):
|
||||
print("en =", enarr )
|
||||
print("gaps =", gaps )
|
||||
|
||||
plt.ion()
|
||||
plt.figure()
|
||||
|
||||
plt.plot(enarr,gaps,'*')
|
||||
plt.title(f"harmonic no {h_no}")
|
||||
plt.xlabel("E / keV")
|
||||
plt.ylabel("Gap / mm")
|
||||
plt.show()
|
||||
|
||||
def setu19(en, *harm_no, detune=0):
|
||||
"""
|
||||
set the U19 to the gaps defined in Jul2025, or the "theoretical" ones for higher
|
||||
harmonics
|
||||
USAGE:
|
||||
setu19(en, *harm_no, detune=0)
|
||||
en in keV, possibly select a special harmonics, or detune [0/1] to a value
|
||||
with a nicer beam shape but less flux
|
||||
"""
|
||||
g0 = dev.id_gap.readback.get()
|
||||
|
||||
fitpar_u19 = np.array([2.17078531, 0.519452, -0.00720255]) # measured from U19
|
||||
|
||||
h_all = return_harmon()
|
||||
# dep on energy -> select harmonics
|
||||
if harm_no:
|
||||
harm = int(harm_no[0])
|
||||
print("Selected harmonics is:", harm)
|
||||
|
||||
else:
|
||||
print("Using the default optimised harmonics")
|
||||
if en <= 7:
|
||||
harm = 3 # h = h[3]
|
||||
elif 7 < en <= 10:
|
||||
harm = 5
|
||||
elif 10 < en <= 13:
|
||||
harm = 7
|
||||
elif 13 < en <= 16:
|
||||
harm = 9
|
||||
elif 16 < en <= 19:
|
||||
harm = 11
|
||||
elif 19 < en <= 22:
|
||||
harm = 13
|
||||
|
||||
if en <= 22:
|
||||
h = h_all[harm]
|
||||
print(f"harmonics is {harm}.")
|
||||
|
||||
polynomial = np.poly1d(h)
|
||||
g = polynomial(en)
|
||||
# print(f"For energy {en} the used harmonic is {polynomial} for gap {g}")
|
||||
## for time being: if E > 20 : use the "theoretical", old measured and interpolated values up to E = 30 keV
|
||||
# 21, 22 : 13
|
||||
# 23, 24, 25: 15;
|
||||
# 26: 15 or 17
|
||||
# 27, 28: 17
|
||||
# 29: 15, 17, 19
|
||||
# 30: 19
|
||||
##
|
||||
if 23 < en <= 25:
|
||||
n = 15
|
||||
enorm = en / n
|
||||
g = exponential_func0(enorm, fitpar_u19[0], fitpar_u19[1], fitpar_u19[2])
|
||||
elif 25 < en <= 29:
|
||||
n = 17
|
||||
enorm = en / n
|
||||
g = exponential_func0(enorm, fitpar_u19[0], fitpar_u19[1], fitpar_u19[2])
|
||||
elif 29 < en:
|
||||
n = 19
|
||||
enorm = en / n
|
||||
g = exponential_func0(enorm, fitpar_u19[0], fitpar_u19[1], fitpar_u19[2])
|
||||
|
||||
print("Undulator has been ", g0, " mm")
|
||||
if 4.5 <= g <= 20:
|
||||
print("Moving Undulator gap to ", g, " mm")
|
||||
else:
|
||||
print("not a valid gap, do nothing")
|
||||
|
||||
if detune:
|
||||
g =g *0.996
|
||||
print("moving to detuned gap value, slightly below max, about 0.15 % ")
|
||||
#print("move disabled!!")
|
||||
res = scans.umv(dev.id_gap, g, relative=False)
|
||||
|
||||
return
|
||||
|
||||
##################################
|
||||
def harmon_walk(estart=7.5, end_en=13):
|
||||
import time
|
||||
|
||||
en = estart
|
||||
ans ='y'
|
||||
while en < end_en+0.5 and ans == 'y':
|
||||
print(en)
|
||||
setu19(en, 5)
|
||||
time.sleep(2)
|
||||
sete(en)
|
||||
en = en+0.5
|
||||
ans = input("Next energy? y/n: ")
|
||||
|
||||
|
||||
##################################
|
||||
def gap_harm(e=12.4):
|
||||
fitpar_u19 = np.array([2.17078531, 0.519452, -0.00720255])
|
||||
fitpar_u17 = np.array([2.17078572, 0.46477267, -0.005766])
|
||||
e = float(input("Please enter an energy between 6 and 30: "))
|
||||
|
||||
for n in range(3, 23):
|
||||
|
||||
# n = int(input('Please enter a harmonic n, n between 3 and 15 '))
|
||||
enorm = e / n
|
||||
g_19 = exponential_func0(enorm, fitpar_u19[0], fitpar_u19[1], fitpar_u19[2])
|
||||
g_17 = exponential_func0(enorm, fitpar_u17[0], fitpar_u17[1], fitpar_u17[2])
|
||||
print(f"harmonic {n}, gap for U19 = {g_19:.5f}, for U17 = {g_17:.5f}")
|
||||
# print(f"harmonic {n}, gap for U17 = {g_17}")
|
||||
|
||||
return
|
||||
|
||||
|
||||
##################################
|
||||
|
||||
|
||||
def long_gscan(estart=7, end_en=20.5, g_low=4.5, g_high=9.0, nsteps=1500):
|
||||
import time
|
||||
import numpy as np
|
||||
|
||||
dirname = "/home/gac-x10sa/Data/"
|
||||
|
||||
print(
|
||||
f"scanning the U19 gap from {estart} keV to {end_en} keV, for a gapsize from {g_low} to {g_high}"
|
||||
)
|
||||
resol = (g_high - g_low) / nsteps
|
||||
print(f"nsteps = {nsteps}; resolution is {resol} mm")
|
||||
dock_area = bec.gui.new("LongGapScan")
|
||||
wr = dock_area.new().new(bec.gui.available_widgets.Waveform)
|
||||
mot = dev.id_gap
|
||||
det = dev.lu_bpmsum
|
||||
wr.plot(x_name=mot.name, y_name=det.name) ## names first !
|
||||
wr.x_label = mot.name
|
||||
wr.y_label = det.name
|
||||
g0 = dev.id_gap.readback.get()
|
||||
|
||||
# g_low = 4.5 # 4.5
|
||||
# g_high = 9.0 # 9.0
|
||||
# nsteps = 1500 # res = 3 um
|
||||
|
||||
en = estart
|
||||
|
||||
while en < end_en:
|
||||
sete(en)
|
||||
time.sleep(1)
|
||||
rock()
|
||||
print(f"setting energy to {en}")
|
||||
time.sleep(2)
|
||||
ds = scans.line_scan(
|
||||
dev.id_gap, g_low, g_high, steps=nsteps, exp_time=0.8, relative=False
|
||||
)
|
||||
gap_data = ds.scan.live_data.id_gap.id_gap.val
|
||||
bpm_data = ds.scan.live_data.lu_bpmsum.lu_bpmsum.val
|
||||
wr.plot(x=gap_data, y=bpm_data)
|
||||
# writing output to simple data file for later analysis:
|
||||
combined = np.column_stack((gap_data, bpm_data))
|
||||
filename = dirname + "gaps" + str(en) + ".txt"
|
||||
with open(filename, "w") as f:
|
||||
np.savetxt(f, combined, delimiter=",", fmt="%5f")
|
||||
|
||||
en += 1
|
||||
return
|
||||
|
||||
|
||||
##################################
|
||||
def gscan(centre=0, gomax=0, detune=0):
|
||||
"""
|
||||
Scan the ID GAP and go
|
||||
to the max of lu_bpm intensity
|
||||
gscan(centre=0): just scan
|
||||
gscan(centre=1): go to centre of fit max
|
||||
gscan(centre=1, gomax=1): go to max of intensity
|
||||
gscan(centre=1,detune=1): position of slightly less flux with nicer beam shape
|
||||
|
||||
"""
|
||||
import time
|
||||
|
||||
dock_area = bec.gui.new()
|
||||
wr = dock_area.new().new(bec.gui.available_widgets.Waveform)
|
||||
mot = dev.id_gap
|
||||
det = dev.lu_bpmsum
|
||||
wr.plot(x_name=mot.name, y_name=det.name) ## names first !
|
||||
# wr.plot(x=mot.name,y=det.name) ### this comes later
|
||||
wr.x_label = mot.name
|
||||
wr.y_label = det.name
|
||||
|
||||
g0 = dev.id_gap.readback.get()
|
||||
deltag = 0.05
|
||||
ds = scans.line_scan(
|
||||
dev.id_gap, -deltag, deltag, steps=30, exp_time=0.5, relative=True
|
||||
)
|
||||
gap_data = ds.scan.live_data.id_gap.id_gap.val
|
||||
bpm_data = ds.scan.live_data.lu_bpmsum.lu_bpmsum.val
|
||||
|
||||
#maxy = max(bpm_data)
|
||||
#indmax = np.argmax(bpm_data)
|
||||
#gm = gap_data[indmax]
|
||||
|
||||
gcen, xm = fit_plot(gap_data, bpm_data, model="gauss")
|
||||
|
||||
if gomax:
|
||||
gm = xm
|
||||
else:
|
||||
gm = gcen
|
||||
|
||||
print("gap off by ", g0 - gm, " mm")
|
||||
if detune:
|
||||
gm=gm*0.996
|
||||
print("moving to detuned gap value, slightly (0.15 %) below max")
|
||||
|
||||
if centre:
|
||||
time.sleep(0.2)
|
||||
if min(gap_data) <= gm <= max(gap_data):
|
||||
scans.umv(dev.id_gap, gm, relative=False)
|
||||
print("moving to ", gm, " mm")
|
||||
else:
|
||||
print("Fit too far off, try using option gomax=1")
|
||||
|
||||
return
|
||||
|
||||
|
||||
0
pxii_bec/macros/__init__.py
Normal file → Executable file
0
pxii_bec/macros/__init__.py
Normal file → Executable file
355
pxii_bec/macros/calculator.py
Executable file
355
pxii_bec/macros/calculator.py
Executable file
@@ -0,0 +1,355 @@
|
||||
"""Utility functions for calculating energy, wavelength, and Bragg angle."""
|
||||
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
# from pxii_parameters import (EnergyDefaults, CamConversion)
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Constants:
|
||||
"""Constants used in energy calculations"""
|
||||
|
||||
# # Physical Constants from https://physics.nist.gov/cuu/Constants/index.html
|
||||
ANGSTROM_CONVERSION = 1e10 # Convert meters to angstrom
|
||||
PLANCK_CONST_EV = 4.135667696e-15 # eV/Hz
|
||||
SPEED_OF_LIGHT = 299792458 # m/s
|
||||
|
||||
# d-spacings
|
||||
d_spacing = {120: 3.13481, 298: 3.13562}
|
||||
|
||||
|
||||
def speed_of_light_ang():
|
||||
"""
|
||||
Calculate the speed of light in angstroms per second.
|
||||
|
||||
Returns:
|
||||
float: The speed of light converted to angstroms per second.
|
||||
"""
|
||||
return Constants.SPEED_OF_LIGHT * Constants.ANGSTROM_CONVERSION
|
||||
|
||||
|
||||
def en_wav_factor():
|
||||
"""
|
||||
Calculate the energy wavelength factor.
|
||||
|
||||
This function computes a constant factor used to calculate energy
|
||||
values in relation to wavelength by combining Planck's constant,
|
||||
in eV/Hz, and the speed of light in angstrom.
|
||||
|
||||
Returns:
|
||||
float: The computed energy wavelength factor.
|
||||
"""
|
||||
return Constants.PLANCK_CONST_EV * speed_of_light_ang()
|
||||
|
||||
|
||||
# Helper Functions
|
||||
def convert_to_degrees(angle_mrad: float) -> float:
|
||||
"""
|
||||
Convert an angle from milliradians to degrees.
|
||||
|
||||
Args:
|
||||
angle_mrad: The angle value in milliradians.
|
||||
|
||||
Returns:
|
||||
The angle converted into degrees as a float.
|
||||
"""
|
||||
return np.rad2deg(angle_mrad / 1000)
|
||||
|
||||
|
||||
def create_conversion_result(
|
||||
energy_ev: float, wavelength: float, bragg_angle_mrad: float
|
||||
) -> dict:
|
||||
"""
|
||||
Creates a dictionary containing converted values of energy and angles.
|
||||
|
||||
This function takes the energy in electron-volts, the wavelength,
|
||||
and the Bragg angle in milliradians as input. It computes and
|
||||
returns a dictionary containing the energy in both electron-volts
|
||||
and kiloelectron-volts, the wavelength, the Bragg angle in milliradians,
|
||||
and the Bragg angle converted to degrees.
|
||||
|
||||
Args:
|
||||
energy_ev: Energy value in electron-volts.
|
||||
wavelength: Wavelength value.
|
||||
bragg_angle_mrad: Bragg angle in milliradians.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the following keys:
|
||||
- "energy_kev": Energy value in kiloelectron-volts.
|
||||
- "energy_ev": Energy value in electron-volts.
|
||||
- "wavelength": Wavelength value.
|
||||
- "bragg_angle_mrad": Bragg angle in milliradians.
|
||||
- "bragg_angle_deg": Bragg angle in degrees.
|
||||
"""
|
||||
return {
|
||||
"energy_kev": energy_ev / 1000,
|
||||
"energy_ev": energy_ev,
|
||||
"wavelength": wavelength,
|
||||
"bragg_angle_mrad": float(bragg_angle_mrad),
|
||||
"bragg_angle_deg": float(convert_to_degrees(bragg_angle_mrad)),
|
||||
}
|
||||
|
||||
|
||||
def print_conversion_result(result: dict) -> None:
|
||||
"""
|
||||
Prints the energy-related conversion results to the console.
|
||||
"""
|
||||
|
||||
line = (
|
||||
f"energy: {result['energy_ev']:.6g} eV, energy: {result['energy_kev']:.6g} keV, "
|
||||
f"wavelength: {result['wavelength']:.4g} Å, "
|
||||
f"bragg angle: {result['bragg_angle_mrad']:.5g} mrad, {result['bragg_angle_deg']:.4g} deg"
|
||||
)
|
||||
print(line)
|
||||
|
||||
|
||||
# Conversion Functions
|
||||
def calculate_wavelength_from_angle(bragg_angle_mrad: float, temp=120) -> float:
|
||||
"""
|
||||
calculate_wavelength_from_angle(bragg_angle_mrad: float) -> float
|
||||
|
||||
Arguments:
|
||||
bragg_angle_mrad: The Bragg angle in milliradians, used to compute the
|
||||
sine value required for the wavelength calculation.
|
||||
|
||||
Returns:
|
||||
The calculated wavelength as a float value.
|
||||
"""
|
||||
d = Constants.d_spacing[temp]
|
||||
return 2 * d * np.sin(bragg_angle_mrad / 1000)
|
||||
|
||||
|
||||
def calculate_energy_from_wavelength(wavelength: float) -> float:
|
||||
"""
|
||||
Calculates the energy of a photon based on its wavelength.
|
||||
|
||||
Args:
|
||||
wavelength: The wavelength of the photon in angstrom.
|
||||
|
||||
Returns:
|
||||
The energy of the photon in eV.
|
||||
"""
|
||||
return en_wav_factor() / wavelength
|
||||
|
||||
|
||||
def calculate_wavelength_from_energy(energy_ev: float) -> float:
|
||||
"""
|
||||
Calculates the wavelength of a photon from its energy.
|
||||
|
||||
Arguments:
|
||||
energy_ev: float
|
||||
The energy of the photon in electronvolts (eV).
|
||||
|
||||
Returns:
|
||||
float
|
||||
The calculated wavelength of the photon in angstrom.
|
||||
"""
|
||||
return en_wav_factor() / energy_ev
|
||||
|
||||
|
||||
def calculate_bragg_angle_from_wavelength(wavelength: float, temp=120) -> float:
|
||||
"""
|
||||
Calculate the Bragg angle in milliradians for a given wavelength.
|
||||
|
||||
Args:
|
||||
wavelength: The wavelength in angstrom.
|
||||
|
||||
Returns:
|
||||
The Bragg angle in milliradians as a float.
|
||||
"""
|
||||
d = Constants.d_spacing[temp]
|
||||
angle_rad = np.arcsin(wavelength / (2 * d))
|
||||
return angle_rad * 1000
|
||||
|
||||
|
||||
def convert_input_angle_to_mrad(bragg_angle: float) -> float:
|
||||
"""
|
||||
Convert input angle into milliradians (mrad).
|
||||
|
||||
This function takes an angle as input and determines its likely unit,
|
||||
converting it to milliradians (mrad) if necessary. If the input value
|
||||
is less than 1, it is assumed to be in radians and is converted to
|
||||
mrad. If the input value falls between predefined minimum and
|
||||
maximum values for mrad, it is assumed to be in degrees and thus
|
||||
converted to mrad using the degrees-to-radians conversion factor.
|
||||
|
||||
For input values that don't match these scenarios, it assumes
|
||||
that the input is already in mrad and returns it unchanged.
|
||||
|
||||
Arguments:
|
||||
bragg_angle (float): The input Bragg angle, which can be in
|
||||
radians, degrees, or milliradians.
|
||||
|
||||
Returns:
|
||||
float: The Bragg angle converted into milliradians (mrad).
|
||||
"""
|
||||
if bragg_angle < 1: # Likely the input angle is in radians
|
||||
return bragg_angle * 1000
|
||||
if 3 < bragg_angle < 25: # Likely input angle is in degrees
|
||||
return np.deg2rad(bragg_angle) * 1000
|
||||
return bragg_angle # Already in mrad
|
||||
|
||||
|
||||
# Core Functions
|
||||
def validate_energy(energy_ev):
|
||||
"""
|
||||
Validates the energy value to ensure it falls within the acceptable range. The function
|
||||
converts the provided energy from keV to eV if the input value is less than 1/1000 of the
|
||||
maximum energy value. It then checks whether the energy is within the defined bounds.
|
||||
If the energy value is outside the acceptable range, the function raises a ValueError.
|
||||
|
||||
Args:
|
||||
energy_ev (float): The energy value in eV or keV to be validated. If this value is
|
||||
smaller than 1/1000 of the maximum allowed energy (in eV), it will be multiplied
|
||||
by 1000 to convert it from keV to eV.
|
||||
|
||||
Returns:
|
||||
float: The validated energy value in eV that falls within the acceptable range.
|
||||
|
||||
Raises:
|
||||
ValueError: If the energy value is outside the defined range of
|
||||
[MIN_ENERGY_EV, MAX_ENERGY_EV].
|
||||
"""
|
||||
if energy_ev < EnergyDefaults.max_energy_ev / 1000: # Assuming the input is in keV.
|
||||
energy_ev *= 1000
|
||||
if not EnergyDefaults.min_energy_ev <= energy_ev <= EnergyDefaults.max_energy_ev:
|
||||
raise ValueError(
|
||||
f"Energy of {energy_ev} eV is outside the valid range "
|
||||
f"({EnergyDefaults.min_energy_ev} eV to {EnergyDefaults.max_energy_ev} eV)"
|
||||
)
|
||||
return energy_ev
|
||||
|
||||
|
||||
def convert_from_bragg(
|
||||
bragg_angle_mrad: float, temp=120, print_result: bool = False
|
||||
) -> dict:
|
||||
"""
|
||||
Convert the Bragg angle to wavelength and energy, returning the result as a dictionary.
|
||||
|
||||
This function converts a given Bragg angle (in milliradians) into the corresponding
|
||||
wavelength and energy values, and returns them in a dictionary format. The function
|
||||
also supports optional printing of the calculated results.
|
||||
|
||||
Args:
|
||||
bragg_angle_mrad (float): The Bragg angle in milliradians to be converted.
|
||||
print_result (bool): Whether to print the conversion result. Defaults to False.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the following keys:
|
||||
- 'energy_ev': Energy in electronvolts.
|
||||
- 'wavelength': Wavelength corresponding to the input angle.
|
||||
- 'bragg_angle_mrad': Input Bragg angle in milliradians.
|
||||
"""
|
||||
bragg_angle_mrad = convert_input_angle_to_mrad(bragg_angle_mrad)
|
||||
wavelength = float(calculate_wavelength_from_angle(bragg_angle_mrad, temp=temp))
|
||||
energy_ev = float(calculate_energy_from_wavelength(wavelength))
|
||||
result = create_conversion_result(energy_ev, wavelength, bragg_angle_mrad)
|
||||
if print_result:
|
||||
print_conversion_result(result)
|
||||
return result
|
||||
|
||||
|
||||
def convert_from_energy(energy_ev: float, temp=120, print_result: bool = False) -> dict:
|
||||
"""
|
||||
Convert energy in electron volts (eV) to wavelength and Bragg angle in milliradians
|
||||
(mrad). This method validates the given energy, calculates corresponding properties,
|
||||
and optionally prints the result.
|
||||
|
||||
Args:
|
||||
energy_ev: Energy value in electron volts (float) to be converted.
|
||||
print_result: Flag indicating whether to print the resulting
|
||||
conversion details (bool). Defaults to False.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the following key-value pairs:
|
||||
- "energy_ev" (float): Validated energy in eV.
|
||||
- "wavelength" (float): Calculated wavelength in meters.
|
||||
- "bragg_angle_mrad" (float): Calculated Bragg angle in mrad.
|
||||
"""
|
||||
energy_ev = validate_energy(energy_ev)
|
||||
wavelength = calculate_wavelength_from_energy(energy_ev)
|
||||
bragg_angle_mrad = float(
|
||||
calculate_bragg_angle_from_wavelength(wavelength, temp=temp)
|
||||
)
|
||||
result = create_conversion_result(energy_ev, wavelength, bragg_angle_mrad)
|
||||
if print_result:
|
||||
print_conversion_result(result)
|
||||
return result
|
||||
|
||||
|
||||
def convert_from_wavelength(
|
||||
wavelength: float,
|
||||
temp: float = 120,
|
||||
print_result: bool = False,
|
||||
) -> dict:
|
||||
"""
|
||||
Convert a given wavelength value into corresponding energy, Bragg angle, and
|
||||
generate a result dictionary.
|
||||
|
||||
The function processes a wavelength value, checks its validity against a
|
||||
permitted range, calculates corresponding energy and Bragg angle, and
|
||||
formats the results into a dictionary. Optionally, the function can print
|
||||
the result.
|
||||
|
||||
Parameters:
|
||||
wavelength: float
|
||||
The input wavelength value in Angstroms to be converted. Should
|
||||
fall within the permitted wavelength range.
|
||||
print_result: bool
|
||||
Optional flag indicating whether to print the conversion result.
|
||||
Default is False.
|
||||
|
||||
Returns:
|
||||
dict
|
||||
A dictionary containing the energy (electron-volts), wavelength
|
||||
(Angstroms), and Bragg angle (milliradians). If the wavelength is
|
||||
outside of the permitted range, returns None.
|
||||
"""
|
||||
energy_ev = calculate_energy_from_wavelength(wavelength)
|
||||
bragg_angle_mrad = float(
|
||||
calculate_bragg_angle_from_wavelength(wavelength, temp=temp)
|
||||
)
|
||||
result = create_conversion_result(energy_ev, wavelength, bragg_angle_mrad)
|
||||
if print_result:
|
||||
print_conversion_result(result)
|
||||
return result
|
||||
|
||||
|
||||
def calc_perp_position(
|
||||
energy_ev: float,
|
||||
print_result: bool = False,
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the perpendicular motor position based on provided energy in electron-volts (eV).
|
||||
|
||||
This function computes the perpendicular motor position using the given energy value in
|
||||
electron-volts. The calculation is based on the Bragg angle derived from the energy. An optional
|
||||
parameter allows printing the result during execution.
|
||||
|
||||
Parameters:
|
||||
energy_ev (float): The energy value in electron-volts used for the calculation.
|
||||
print_result (bool): Flag to determine whether to print the computed perpendicular offset.
|
||||
Default is False.
|
||||
|
||||
Returns:
|
||||
float: The computed perpendicular position.
|
||||
|
||||
Raises:
|
||||
None
|
||||
"""
|
||||
result = convert_from_energy(energy_ev, print_result=False)
|
||||
bragg_angle_rad = result["bragg_angle_mrad"] / 1000
|
||||
perp_offset = float(EnergyDefaults.beam_offset / (2 * np.cos(bragg_angle_rad))) - 3
|
||||
if print_result:
|
||||
print(f"Perp = {perp_offset: .4f}")
|
||||
return perp_offset
|
||||
|
||||
|
||||
def calc_scam_microns(pixels, zoom=1000):
|
||||
"""Convert pixels to microns for the sample camera"""
|
||||
return float(pixels / (CamConversion.a * np.exp(CamConversion.b * zoom)))
|
||||
|
||||
def calc_bsccam_microns(pixels):
|
||||
"""Convert pixels to microns for the BSC camera"""
|
||||
return pixels*20
|
||||
|
||||
126
pxii_bec/macros/flux_di.py
Executable file
126
pxii_bec/macros/flux_di.py
Executable file
@@ -0,0 +1,126 @@
|
||||
#!/usr/bin/env python
|
||||
# ### PYTHON pro to determine the flux from the current
|
||||
# ### on a Si diode
|
||||
# ### A Pauluhn, Dec 2012
|
||||
# ### from IDL pro flux_diode.pro (2010)
|
||||
|
||||
|
||||
## NOTE: for TRANSFER DIODE:
|
||||
## switch off ANY ambient light
|
||||
## note that: 10 um Si, and 0 um Al for transfer diode Hamamatsu
|
||||
|
||||
# ### import the standard
|
||||
import os, sys, string, time
|
||||
import re
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
|
||||
|
||||
|
||||
def fluxcalc(curr, en, t_air, t_si, t_al):
|
||||
|
||||
#------ parameters:
|
||||
rsi = 2.33 # g/cm^3 density of Si
|
||||
ral = 2.699 # g/cm^3 density of Al
|
||||
rair = 1.205e-3 # g/cm^3 density of air
|
||||
|
||||
eps_si = 3.62 # eV , energy req for charge separation in Si (el/hole pair)
|
||||
e = 1.602e-19 # As , elem charge
|
||||
|
||||
t_si = 0.0012 # thickness of diode in cm (==12 micrometres) ; [*10000]
|
||||
t_al = 0.002 # thickness of diode in cm (==20 micrometres)
|
||||
|
||||
#--------- calc----------------------------------------------------
|
||||
#energy deposit in Silicon
|
||||
#ratio of photoelectric cross section to density for Silicon
|
||||
#alog10(A_Si)= 4.158 - 2.238*alog10(Ep) - 0.477*alog10(Ep)^2 + 0.0789*alog10(Ep)^3
|
||||
|
||||
ps = np.poly1d([0.0789, - 0.477, - 2.238, 4.158])
|
||||
#print ps
|
||||
# ps.c
|
||||
# print ps(2.3)
|
||||
|
||||
leval = math.log10(en)
|
||||
hlp_si = ps(leval)
|
||||
a_si = np.pow(10, hlp_si)
|
||||
#efact = np.exp(-A_Si*rsi*t_Si)
|
||||
#sifact =1 - efact
|
||||
sifact = - np.expm1(-a_si*rsi*t_si)
|
||||
#print 'sifact = ', sifact
|
||||
|
||||
fl = 1000.*curr * eps_si/1.602/en/sifact *1.e13 # curr expected in A
|
||||
#print 'fl = ', fl
|
||||
|
||||
#Aluminium attenuation
|
||||
#ratio of photoelectric cross section to density for Aluminium
|
||||
pa = np.poly1d([ 0.0638, - 0.413, - 2.349, 4.106])
|
||||
|
||||
hlp_al = pa(leval)
|
||||
a_al = pow(10, hlp_al)
|
||||
|
||||
# attenuation due to aluminium
|
||||
alfact = np.exp(-a_al*ral*t_al)
|
||||
#print 'alfact = ', alfact
|
||||
# Air attenuation
|
||||
# ratio of photoelectric cross section to density for air
|
||||
|
||||
pair = np.poly1d([0.928, - 2.348, - 1.026, 3.153])
|
||||
hlp_air = pair(leval)
|
||||
a_air = np.pow(10, hlp_air)
|
||||
|
||||
#print('hlp_air, a_air, rair, t_air = ', hlp_air, a_air, rair , t_air)
|
||||
|
||||
# attenuation due to air
|
||||
airfact = np.exp(-a_air*rair*t_air/10.)
|
||||
#airfact = 1.
|
||||
|
||||
|
||||
#print 'airfact = ', airfact
|
||||
#print ' t_air = ', t_air
|
||||
|
||||
# total flux from photocurrent
|
||||
fl = fl/alfact/airfact
|
||||
#print 'fl = ', fl
|
||||
|
||||
return fl
|
||||
|
||||
#
|
||||
# Main
|
||||
#
|
||||
|
||||
def flux_x10sa():
|
||||
curr = input('Please enter the current [in A] ')
|
||||
curr = float(curr)
|
||||
print('Current = ', curr)
|
||||
en = input('Please enter the energy [in keV] ')
|
||||
en = float(en)
|
||||
print('Energy = ', en)
|
||||
## d_det = input('Please enter the detector distance [in mm] ')
|
||||
d_det = dev.det_z.user_readback.get()
|
||||
d_off = 15 ## at X10SA ### input('Please enter the OFFSET of the diode to det surface [in mm] ')
|
||||
|
||||
t_air = float(d_det) + float(d_off)
|
||||
print('Air path length (CARE ! add det distance and offset of diode) = ', t_air) # include additional diode distance
|
||||
|
||||
# t_si = input('Please enter the Si thickness of diode [in um] ')
|
||||
# t_si = float(t_si) / 10000. # to cm
|
||||
|
||||
t_si = 12 # um ## at X10SA
|
||||
# t_al = input('Please enter the Al thickness of diode [in um] ')
|
||||
# t_al = float(t_al) / 10000. # to cm
|
||||
|
||||
t_al = 20 # um ## at X10SA
|
||||
fl = fluxcalc(curr, en, t_air,t_si, t_al)
|
||||
|
||||
print( " Diode Current = %.6f A " % curr)
|
||||
print( " Energy = %.4f keV " % en )
|
||||
|
||||
print( " Thickness of active Si layer = %.4f\t cm " % t_si) #*10000.
|
||||
print( " Thickness of Al layer in front of diode = %.4f\t cm " % t_al) #*10000.
|
||||
print( " Length of path of air in front of diode = %.4f\t mm " % t_air) #*10000.
|
||||
|
||||
print (" Flux = %6.2e\t ph/s " % fl)
|
||||
|
||||
return fl
|
||||
|
||||
254
pxii_bec/macros/mx_basics.py
Executable file
254
pxii_bec/macros/mx_basics.py
Executable file
@@ -0,0 +1,254 @@
|
||||
"""Get data from an h5 file or BEC history and perform fitting."""
|
||||
|
||||
import numpy as np
|
||||
from lmfit.models import (
|
||||
GaussianModel,
|
||||
LorentzianModel,
|
||||
VoigtModel,
|
||||
ConstantModel,
|
||||
LinearModel,
|
||||
)
|
||||
from scipy.ndimage import gaussian_filter1d
|
||||
import h5py
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def create_fit_parameters(
|
||||
deriv: bool = False,
|
||||
model: str = "Voigt",
|
||||
baseline: str = "Linear",
|
||||
smoothing: None = None,
|
||||
):
|
||||
"""Store the fit parameters in a dictionary."""
|
||||
# map input model to lmfit model name
|
||||
model_mappings = {
|
||||
"Gaussian": GaussianModel,
|
||||
"Lorentzian": LorentzianModel,
|
||||
"Voigt": VoigtModel,
|
||||
"Constant": ConstantModel,
|
||||
"Linear": LinearModel,
|
||||
}
|
||||
return {
|
||||
"deriv": deriv,
|
||||
"model": model_mappings[model],
|
||||
"baseline": model_mappings[baseline],
|
||||
"smoothing": smoothing,
|
||||
}
|
||||
|
||||
|
||||
def get_data_from_h5(signal_name: str = "lu_bpmsum"):
|
||||
"""Get data from an h5 file."""
|
||||
with h5py.File("scan_676.h5", "r") as f:
|
||||
entry = f["entry"]["collection"]
|
||||
y_data = entry["devices"][signal_name][signal_name]["value"][:]
|
||||
motor_data = entry["metadata"]["bec"]
|
||||
motor_name = motor_data["scan_motors"][0].decode()
|
||||
scan_number = motor_data["scan_number"][()]
|
||||
x_data = entry["devices"][motor_name][motor_name]["value"][:]
|
||||
return {
|
||||
"x_data": x_data,
|
||||
"y_data": y_data,
|
||||
"signal_name": signal_name,
|
||||
"motor_name": motor_name,
|
||||
"scan_number": str(scan_number),
|
||||
}
|
||||
|
||||
|
||||
def get_data_from_history(
|
||||
history_index: int,
|
||||
signal_name: str = "lu_bpmsum",
|
||||
):
|
||||
"""Read data from the BEC history and return the X and Y data as arrays."""
|
||||
scan = bec.history[history_index]
|
||||
md = scan.metadata["bec"]
|
||||
motor_name = md["scan_motors"][0].decode()
|
||||
scan_number = md["scan_number"]
|
||||
x_data = scan.devices[motor_name][motor_name].read()["value"]
|
||||
y_data = scan.devices[signal_name][signal_name].read()["value"]
|
||||
return {
|
||||
"signal_name": signal_name,
|
||||
"x_data": x_data,
|
||||
"y_data": y_data,
|
||||
"motor_name": motor_name,
|
||||
"scan_number": scan_number,
|
||||
}
|
||||
|
||||
|
||||
def process_data(data, fit_params):
|
||||
"""
|
||||
Process the signal data for fitting based on derivative or smoothing.
|
||||
"""
|
||||
smoothing, deriv = fit_params["smoothing"], fit_params["deriv"]
|
||||
signal_name = data["signal_name"]
|
||||
y_data = data["y_data"]
|
||||
|
||||
if deriv:
|
||||
if smoothing:
|
||||
y_smooth = gaussian_filter1d(y_data, smoothing)
|
||||
fitting_data = np.gradient(y_smooth)
|
||||
signal_name = f"Derivative of smoothed {signal_name}"
|
||||
else:
|
||||
fitting_data = np.gradient(y_data)
|
||||
signal_name = f"Derivative of {signal_name}"
|
||||
elif smoothing and smoothing > 0.01:
|
||||
fitting_data = gaussian_filter1d(y_data, smoothing)
|
||||
signal_name = f"Smoothed {signal_name}"
|
||||
else:
|
||||
fitting_data = y_data
|
||||
|
||||
updated_data = {
|
||||
"y_to_fit": fitting_data,
|
||||
"signal_name": signal_name,
|
||||
}
|
||||
data.update(updated_data)
|
||||
return data
|
||||
|
||||
|
||||
def fit(data, fit_params):
|
||||
"""Fit a signal to a model and return the fitting results."""
|
||||
# Create the model
|
||||
peak_model = fit_params["model"](prefix="peak_")
|
||||
baseline_model = fit_params["baseline"](prefix="base_")
|
||||
full_model = peak_model + baseline_model
|
||||
|
||||
# Prepare data
|
||||
processed_data = process_data(data, fit_params)
|
||||
params = full_model.make_params()
|
||||
y_min = np.min(processed_data["y_to_fit"])
|
||||
|
||||
# Configure baseline parameters
|
||||
if fit_params["baseline"] == ConstantModel:
|
||||
params["base_c"].set(value=y_min)
|
||||
elif fit_params["baseline"] == LinearModel:
|
||||
params["base_intercept"].set(value=y_min)
|
||||
params["base_slope"].set(value=0)
|
||||
|
||||
# Add peak-specific parameters
|
||||
params.update(
|
||||
peak_model.guess(processed_data["y_to_fit"], x=processed_data["x_data"])
|
||||
)
|
||||
|
||||
# Perform the fitting
|
||||
lmfit_result = full_model.fit(
|
||||
processed_data["y_to_fit"], params, x=processed_data["x_data"]
|
||||
)
|
||||
|
||||
# Find the X that gives the max Y
|
||||
max_index = np.argmax(processed_data["y_to_fit"])
|
||||
x_max = processed_data["x_data"][max_index]
|
||||
|
||||
# Collect results
|
||||
return {
|
||||
"model": fit_params["model"].__name__,
|
||||
"fwhm": lmfit_result.params["peak_fwhm"].value,
|
||||
"centre": lmfit_result.best_values["peak_center"],
|
||||
"height": lmfit_result.params["peak_height"].value,
|
||||
"chi_sq": lmfit_result.chisqr,
|
||||
"lmfit_result": lmfit_result,
|
||||
"x_max": x_max,
|
||||
}
|
||||
|
||||
|
||||
def plot_fitted_data(data, fit_result):
|
||||
"""Plot the original data and the fitted model."""
|
||||
plt.plot(data["x_data"], data["y_to_fit"], label="Data")
|
||||
plt.plot(
|
||||
data["x_data"],
|
||||
fit_result["lmfit_result"].best_fit,
|
||||
"-",
|
||||
label=f"FWHM = {fit_result['fwhm']:.3f},"
|
||||
f"Centre = {fit_result['centre']:.3f}, "
|
||||
f"Height = {fit_result['height']:.3f}",
|
||||
)
|
||||
plt.xlabel(data["motor_name"])
|
||||
plt.ylabel(data["signal_name"])
|
||||
plt.title(f"Scan {data['scan_number']}, fitted with {fit_result['model']}")
|
||||
plt.grid(True)
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
def select_bec_window(dock_area_name="Fitting"):
|
||||
"""Check to see if the fitting results dock is already open and re-create it if not"""
|
||||
open_docks = bec.gui.windows
|
||||
if open_docks.get(dock_area_name) is None:
|
||||
dock_area = bec.gui.new(dock_area_name)
|
||||
wf = dock_area.new("Plot").new(bec.gui.available_widgets.Waveform)
|
||||
text_box = dock_area.new("Results", position="bottom").new(
|
||||
widget=bec.gui.available_widgets.TextBox
|
||||
)
|
||||
else:
|
||||
wf = bec.gui.Fitting.Plot.Waveform
|
||||
text_box = bec.gui.Fitting.Results.TextBox
|
||||
return wf, text_box
|
||||
|
||||
|
||||
def plot_live_data_bec(
|
||||
motor_name,
|
||||
signal_name,
|
||||
window_name="Fitting"
|
||||
):
|
||||
"""
|
||||
Plotting live data for motor and signal using BEC.
|
||||
|
||||
This function plots live data from a specified motor and signal.
|
||||
It clears the current plot window, sets its title, labels the axes
|
||||
with the provided motor and signal names, and initializes live plotting
|
||||
on the given signal against the motor.
|
||||
|
||||
Args:
|
||||
motor_name (str): The name of the motor to be used as the x-axis.
|
||||
signal_name (str): The name of the signal to be used as the y-axis.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
wf, text_box = select_bec_window(window_name)
|
||||
text_box.set_plain_text("Plotting live data")
|
||||
wf.clear_all()
|
||||
wf.title = "Scan: Live scan"
|
||||
wf.x_label = motor_name
|
||||
wf.y_label = signal_name
|
||||
wf.plot(x_name=motor_name, y_name=signal_name)
|
||||
|
||||
|
||||
def plot_fitted_data_bec(
|
||||
data,
|
||||
fit_result,
|
||||
):
|
||||
"""
|
||||
Plot fitted data and display fitting parameters in the specified window.
|
||||
|
||||
This function selects a BEC window and plots the original data along with the
|
||||
fitted function. Additionally, it displays the fitting results in a text
|
||||
box within the same window for better visualization of the fit results.
|
||||
|
||||
Parameters:
|
||||
data : dict
|
||||
Dictionary containing the original dataset, where 'x_data' and 'y_to_fit'
|
||||
hold the independent variable and the dependent variable, respectively,
|
||||
'scan_number' represents the scan number, 'motor_name' and 'signal_name'
|
||||
provide axis labels.
|
||||
fit_result : dict
|
||||
Dictionary containing the results of the fit, including parameters such
|
||||
as 'centre', 'fwhm', 'height', and the fitted model stored under
|
||||
'lmfit_result', with its 'best_fit' attribute representing the fitted data.
|
||||
"""
|
||||
wf, text_box = select_bec_window()
|
||||
fit_text = (
|
||||
f"Fit parameters: Centre = {fit_result['centre']:.4f}, "
|
||||
f"FWHM = {fit_result['fwhm']:.3f}, "
|
||||
f"Height = {fit_result['height']:.4f}\n"
|
||||
f"Model = {fit_result['model']}\n"
|
||||
f"Chi sq = {fit_result['chi_sq']:.3g}"
|
||||
)
|
||||
text_box.set_plain_text(fit_text)
|
||||
wf.clear_all()
|
||||
wf.title = f"Scan: {data['scan_number']}"
|
||||
wf.x_label = data["motor_name"]
|
||||
wf.y_label = data["signal_name"]
|
||||
wf.plot(x=data["x_data"], y=data["y_to_fit"], label="data")
|
||||
wf.plot(
|
||||
x=data["x_data"], y=fit_result["lmfit_result"].best_fit, label="Fit to data"
|
||||
)
|
||||
|
||||
344
pxii_bec/macros/mx_methods.py
Executable file
344
pxii_bec/macros/mx_methods.py
Executable file
@@ -0,0 +1,344 @@
|
||||
"""Use the methods in mx_basics to perform:
|
||||
1) a go_to_peak scan, that scans a motor, finds the peak position and moves to peak
|
||||
2) fits data from a bec history file
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
# from pxiii_parameters import FitDefaults, BPMScans, MirrorConfig
|
||||
|
||||
# from mx_basics import (
|
||||
# create_fit_parameters,
|
||||
# get_data_from_history,
|
||||
# fit,
|
||||
# plot_fitted_data_bec,
|
||||
# plot_live_data_bec,
|
||||
# )
|
||||
|
||||
|
||||
# Method functions
|
||||
def calculate_step_size(start: float, stop: float, steps: int) -> float:
|
||||
"""
|
||||
Provides the function to calculate the step size for dividing a specified range
|
||||
into a given number of steps.
|
||||
|
||||
Args:
|
||||
start: The starting value of the range.
|
||||
stop: The stopping value of the range.
|
||||
steps: The number of steps to divide the range into. Must be at least 1.
|
||||
|
||||
Raises:
|
||||
ValueError: If the steps value is less than 1.
|
||||
|
||||
Returns:
|
||||
The calculated step size as a float, rounded to three decimal places.
|
||||
"""
|
||||
if steps < 1:
|
||||
raise ValueError("Number of steps must be at least 1.")
|
||||
return round((stop - start) / steps, 3)
|
||||
|
||||
|
||||
def move_to_position(motor_device, motor_name: str, position: float, data: dict):
|
||||
"""
|
||||
Function to move a specified motor device to a given position.
|
||||
|
||||
The function verifies if the requested position is within the scan range of the
|
||||
motor device provided. If the position is outside the range, the motor is
|
||||
moved to the center of its scan range, an error message is raised, and the
|
||||
operation is halted. If the position is valid, the motor is moved to the
|
||||
specified position.
|
||||
|
||||
Parameters:
|
||||
motor_device: The motor device to be moved.
|
||||
motor_name: str
|
||||
The name of the motor as a string
|
||||
position: float
|
||||
The desired position to move the motor to. Position should be within
|
||||
the scan range of the motor determined by the provided data.
|
||||
data: dict
|
||||
A dictionary containing "x_data", which is used to determine the
|
||||
scan range of the motor.
|
||||
|
||||
Raises:
|
||||
ValueError: Raised if the specified position is outside the valid scan
|
||||
range determined by "x_data" in the data dictionary. The motor will
|
||||
return to the center of its scan range in this case.
|
||||
"""
|
||||
|
||||
motor_min = np.min(data["x_data"])
|
||||
motor_max = np.max(data["x_data"])
|
||||
motor_centre = (motor_max + motor_min) / 2
|
||||
|
||||
if not motor_min <= position <= motor_max:
|
||||
umv(motor_device, motor_centre)
|
||||
msg = (
|
||||
f"Position {position: .2f} is outside the scan range of "
|
||||
f"{motor_min: .2f}to {motor_max: .2f}. "
|
||||
f"Returning to centre of scan range {motor_centre: .3f}."
|
||||
)
|
||||
raise ValueError(msg)
|
||||
motor_position = round(position, 4)
|
||||
umv(motor_device, motor_position)
|
||||
print(f"\n Moving {motor_name} to position {motor_position: .3f}")
|
||||
|
||||
|
||||
def go_to_peak(
|
||||
motor_device,
|
||||
signal_device,
|
||||
start: float,
|
||||
stop: float,
|
||||
steps: int,
|
||||
relative: bool = FitDefaults.RELATIVE_MODE,
|
||||
plot: bool = True,
|
||||
settle: float = FitDefaults.SETTLE_TIME,
|
||||
confirm: bool = True,
|
||||
gomax: bool = False,
|
||||
):
|
||||
"""
|
||||
Go to the peak of a signal by scanning a motor within a specified range and
|
||||
identifying the optimal position based on signal peak data.
|
||||
|
||||
Parameters:
|
||||
motor_device: The motor device to be scanned.
|
||||
signal_device: The signal device to monitor during the scan.
|
||||
start (float): The starting position of the scan. Ignored if `relative` is True.
|
||||
stop (float): The ending position of the scan. Ignored if `relative` is True.
|
||||
steps (int): The number of steps to divide the scan range into.
|
||||
relative (bool, optional): If True, interpret `start` and `stop` as relative to
|
||||
the current motor position. Defaults to RELATIVE_MODE constant.
|
||||
plot (bool, optional): If True, plot the scan data and the fitted results.
|
||||
Defaults to True.
|
||||
settle (float, optional): The time in seconds to wait after each step for the
|
||||
signal to stabilize. Defaults to DEFAULT_SETTLE_TIME constant.
|
||||
confirm (bool, optional): If True, ask for user confirmation before starting
|
||||
the scan. Defaults to True.
|
||||
|
||||
Raises:
|
||||
Exception: Raises exceptions potentially raised by dependent functions or
|
||||
operations such as plotting, fitting, or motor movement.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
motor_name = motor_device.name
|
||||
signal_name = signal_device.name
|
||||
# wf.plot(x_name=motor_name, y_name=signal_name)
|
||||
if plot:
|
||||
plot_live_data_bec(motor_name, signal_name)
|
||||
|
||||
# Validate and calculate step size
|
||||
step_size = calculate_step_size(start, stop, steps)
|
||||
|
||||
# Confirm the scan range
|
||||
# current_motor_position = motor_device.user_readback.get()
|
||||
current_motor_position = motor_device.read()[motor_name]["value"]
|
||||
if confirm:
|
||||
if relative:
|
||||
scan_start = current_motor_position + start
|
||||
scan_end = current_motor_position + stop
|
||||
print(
|
||||
f"\nScanning from {scan_start: .6g} to {scan_end: .6g} in "
|
||||
f"{steps} steps of size {step_size}"
|
||||
)
|
||||
print(f"Relative mode = {relative}")
|
||||
else:
|
||||
print(
|
||||
f"\nScanning from {start: .5g} to {stop: .5g} in {steps} steps of size {step_size}"
|
||||
)
|
||||
print(f"Relative mode = {relative}")
|
||||
input("Press Enter to continue...")
|
||||
# Perform the scan
|
||||
scan_result = scans.line_scan(
|
||||
motor_device, start, stop, steps=steps, relative=relative, settling_time=settle
|
||||
)
|
||||
motor_data = scan_result.scan.live_data[motor_name][motor_name].val
|
||||
signal_data = scan_result.scan.live_data[signal_name][signal_name].val
|
||||
scan_number = "Current"
|
||||
|
||||
data = {
|
||||
"x_data": np.array(motor_data),
|
||||
"y_data": np.array(signal_data),
|
||||
"motor_name": motor_name,
|
||||
"signal_name": signal_name,
|
||||
"motor_device": motor_device,
|
||||
"scan_number": scan_number,
|
||||
}
|
||||
|
||||
# Define and fit model to scan data
|
||||
fit_params = create_fit_parameters(False, FitDefaults.MODEL, FitDefaults.BASELINE)
|
||||
fit_result = fit(data, fit_params)
|
||||
|
||||
# Plot the fitted data if plot = True
|
||||
if plot:
|
||||
plot_fitted_data_bec(data, fit_result)
|
||||
|
||||
# If gomax is set then move to the maximum value, rather than the fit centre
|
||||
if gomax:
|
||||
value = fit_result["x_max"]
|
||||
print(f"Max position is at {value}")
|
||||
move_to_position(
|
||||
data["motor_device"], data["motor_name"], fit_result["x_max"], data
|
||||
)
|
||||
else:
|
||||
# Safely move the motor to the peak position
|
||||
move_to_position(
|
||||
data["motor_device"], data["motor_name"], fit_result["centre"], data
|
||||
)
|
||||
|
||||
|
||||
def fit_history(
|
||||
history_index: int,
|
||||
signal_name: str,
|
||||
deriv: bool = False,
|
||||
model: str = FitDefaults.MODEL,
|
||||
move_to_peak: bool = False,
|
||||
):
|
||||
"""
|
||||
Retrieve and analyze historical data by fitting a model, optionally moving to
|
||||
a peak position.
|
||||
|
||||
Parameters:
|
||||
history_index (int): Index of the historical data set to retrieve.
|
||||
signal_name (str): Name of the signal to fit.
|
||||
deriv (bool, optional): Whether to include the derivative in the fitting
|
||||
procedure. Defaults to False.
|
||||
model (str, optional): Name of the model to use for fitting. Defaults to
|
||||
DEFAULT_MODEL.
|
||||
move_to_peak (bool, optional): Whether to move the motor to the peak position
|
||||
after fitting. Defaults to False.
|
||||
|
||||
Raises:
|
||||
KeyError: If required keys are not found in the retrieved data dictionary.
|
||||
ValueError: If the fitting process fails or produces invalid results.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Retrieve historical data
|
||||
data = get_data_from_history(history_index, signal_name)
|
||||
|
||||
# Define fitting parameters
|
||||
fit_params = create_fit_parameters(deriv, model, FitDefaults.BASELINE)
|
||||
|
||||
# Perform fit and plot the data
|
||||
fit_result = fit(data, fit_params)
|
||||
plot_fitted_data_bec(data, fit_result)
|
||||
|
||||
# Optionally move the motor to the peak position
|
||||
if move_to_peak:
|
||||
move_to_position(
|
||||
data["motor_device"], data["motor_name"], fit_result["centre"], data
|
||||
)
|
||||
|
||||
|
||||
def scan_bpm(bpmname):
|
||||
"""
|
||||
Runs a grid scan of a BPM in x and y, and plots each channel
|
||||
as a heatmap.
|
||||
|
||||
Parameters:
|
||||
bpmname: the name of the bpm to be scanned e.g. "fe"
|
||||
|
||||
"""
|
||||
|
||||
# Open a dock area and set up the heatmaps
|
||||
dock_area = bec.gui.new("XBPM_Scan")
|
||||
wf5 = dock_area.new("Sum").new(bec.gui.available_widgets.Heatmap)
|
||||
wf1 = dock_area.new("Ch1", relative_to="Sum", position="bottom").new(
|
||||
bec.gui.available_widgets.Heatmap
|
||||
)
|
||||
wf3 = dock_area.new("Ch3", relative_to="Ch1", position="right").new(
|
||||
bec.gui.available_widgets.Heatmap
|
||||
)
|
||||
wf4 = dock_area.new("Ch4", relative_to="Ch3", position="bottom").new(
|
||||
bec.gui.available_widgets.Heatmap
|
||||
)
|
||||
wf2 = dock_area.new("Ch2", relative_to="Ch1", position="bottom").new(
|
||||
bec.gui.available_widgets.Heatmap
|
||||
)
|
||||
wfscan = dock_area.new("ScanControl").new(bec.gui.available_widgets.ScanControl)
|
||||
|
||||
cfg = getattr(BPMScans, bpmname)
|
||||
|
||||
wf1.x_label = cfg["x_name"]
|
||||
wf1.y_label = cfg["y_name"]
|
||||
wf1.plot(
|
||||
x_name=cfg["x_name"],
|
||||
y_name=cfg["y_name"],
|
||||
z_name=cfg["z1_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
|
||||
wf2.x_label = cfg["x_name"]
|
||||
wf2.y_label = cfg["y_name"]
|
||||
wf2.plot(
|
||||
x_name=cfg["x_name"],
|
||||
y_name=cfg["y_name"],
|
||||
z_name=cfg["z2_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
|
||||
wf3.x_label = cfg["x_name"]
|
||||
wf3.y_label = cfg["y_name"]
|
||||
wf3.plot(
|
||||
x_name=cfg["x_name"],
|
||||
y_name=cfg["y_name"],
|
||||
z_name=cfg["z3_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
|
||||
wf4.x_label = cfg["x_name"]
|
||||
wf4.y_label = cfg["y_name"]
|
||||
wf4.plot(
|
||||
x_name=cfg["x_name"],
|
||||
y_name=cfg["y_name"],
|
||||
z_name=cfg["z4_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
|
||||
wf5.x_label = cfg["x_name"]
|
||||
wf5.y_label = cfg["y_name"]
|
||||
wf5.plot(
|
||||
x_name=cfg["x_name"],
|
||||
y_name=cfg["y_name"],
|
||||
z_name=cfg["z5_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
# Run the scan
|
||||
x_mot = cfg["x_device"]
|
||||
y_mot = cfg["y_device"]
|
||||
# scans.grid_scan(x_mot, -0.5, 0.5, 20, y_mot, -0.5, 0.5, 20,
|
||||
# exp_time=0.5, relative=False, snaked=True)
|
||||
|
||||
|
||||
def optimise_kb(mirror):
|
||||
"""
|
||||
Runs a grid scan of a the upstream and downstream benders,
|
||||
and plots a heatmap of the sample camera x or y sigma.
|
||||
|
||||
Parameters:
|
||||
mirror: either "hfm" or :vfm"
|
||||
|
||||
"""
|
||||
|
||||
# Open a dock area and set up the heatmaps
|
||||
dock_area = bec.gui.new(mirror)
|
||||
wf1 = dock_area.new("Heatmap").new(bec.gui.available_widgets.Heatmap)
|
||||
|
||||
wfscan = dock_area.new("ScanControl").new(bec.gui.available_widgets.ScanControl)
|
||||
|
||||
cfg = getattr(MirrorConfig, mirror)
|
||||
|
||||
wf1.x_label = cfg["bu_name"]
|
||||
wf1.y_label = cfg["bd_name"]
|
||||
wf1.plot(
|
||||
x_name=cfg["bu_name"],
|
||||
y_name=cfg["bd_name"],
|
||||
z_name=cfg["z_name"],
|
||||
color_map="plasma",
|
||||
)
|
||||
|
||||
# Run the scan
|
||||
x_mot = cfg["x_device"]
|
||||
y_mot = cfg["y_device"]
|
||||
# scans.grid_scan(x_mot, -0.02, 0.02, 11, y_mot, -0.02, 0.02, 11,
|
||||
# exp_time=0.5, relative=True, snaked=True)
|
||||
244
pxii_bec/macros/pxii_energy.py
Executable file
244
pxii_bec/macros/pxii_energy.py
Executable file
@@ -0,0 +1,244 @@
|
||||
"""Script to change energy at PXII by setting gap, DCM motors and mirror stripe
|
||||
|
||||
Moving DCM motors - implemented for Bragg, pitch and perp
|
||||
Gap - optional, can be switched off using move_gap=False
|
||||
Mirrors - change of mirror stripe is not yet implemented
|
||||
Plotting optional
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
# from pxii_gap import set_gap
|
||||
# from mx_methods import go_to_peak
|
||||
# from pxii_parameters import EnergyDefaults, Calibration
|
||||
|
||||
# from calculator import (
|
||||
# calc_perp_position,
|
||||
# validate_energy,
|
||||
# convert_from_bragg,
|
||||
# convert_from_energy,
|
||||
# )
|
||||
|
||||
|
||||
def get_current_energy():
|
||||
"""
|
||||
Returns the energy in eV from the current bragg angle.
|
||||
"""
|
||||
current_bragg_angle = dev.dcm_bragg.user_readback.get()
|
||||
current_energy = convert_from_bragg(current_bragg_angle, print_result=False)[
|
||||
"energy_ev"
|
||||
]
|
||||
return current_energy
|
||||
|
||||
|
||||
# Functions below are common to all beamlines
|
||||
def calculate_energy_difference(current_energy, target_energy):
|
||||
"""
|
||||
Calculate the absolute difference in energy between the current energy level
|
||||
and the target energy level.
|
||||
"""
|
||||
return abs(target_energy - current_energy)
|
||||
|
||||
|
||||
def get_mirror_stripe(energy_ev):
|
||||
"""
|
||||
Determines the mirror stripe material based on the energy level provided
|
||||
and the specified thresholds for silicon, rhodium, and platinum.
|
||||
|
||||
Args:
|
||||
energy_ev (float): Energy level in electron volts, used to determine
|
||||
the corresponding material type.
|
||||
|
||||
Returns:
|
||||
str: A string indicating the material type corresponding to the provided
|
||||
energy level. Possible values are "silicon", "rhodium", or "platinum".
|
||||
"""
|
||||
if energy_ev <= EnergyDefaults.stripe_thresholds["silicon"]:
|
||||
return "silicon"
|
||||
if (
|
||||
EnergyDefaults.stripe_thresholds["silicon"]
|
||||
< energy_ev
|
||||
<= EnergyDefaults.stripe_thresholds["rhodium"]
|
||||
):
|
||||
return "rhodium"
|
||||
return "platinum"
|
||||
|
||||
|
||||
def set_mirror_stripe(energy_ev):
|
||||
"""
|
||||
Selects and sets the appropriate mirror stripe based on the given energy value
|
||||
in electron volts (eV).
|
||||
|
||||
Args:
|
||||
energy_ev (float): The energy value in electron volts
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
selected_stripe = get_mirror_stripe(energy_ev)
|
||||
print(f"Selected mirror stripe: {selected_stripe}")
|
||||
|
||||
|
||||
def mono_pitch_scan(plot=True):
|
||||
"""Scan the monochromator pitch and move to the peak."""
|
||||
|
||||
if plot:
|
||||
print("Scanning monochromator pitch and moving to peak, with plotting.")
|
||||
go_to_peak(
|
||||
EnergyDefaults.mono_pitch,
|
||||
EnergyDefaults.signals["sig1"],
|
||||
-EnergyDefaults.pitch_scan["halfwidth"],
|
||||
EnergyDefaults.pitch_scan["halfwidth"],
|
||||
steps=EnergyDefaults.pitch_scan["steps"],
|
||||
relative=True,
|
||||
settle=0.01,
|
||||
plot=True,
|
||||
confirm=False,
|
||||
)
|
||||
else:
|
||||
print("Scanning monochromator pitch and moving to peak, without plotting.")
|
||||
go_to_peak(
|
||||
EnergyDefaults.mono_pitch,
|
||||
EnergyDefaults.signals["sig1"],
|
||||
-EnergyDefaults.pitch_scan["halfwidth"],
|
||||
EnergyDefaults.pitch_scan["halfwidth"],
|
||||
steps=EnergyDefaults.pitch_scan["steps"],
|
||||
relative=True,
|
||||
settle=0.01,
|
||||
plot=False,
|
||||
confirm=False,
|
||||
)
|
||||
|
||||
|
||||
# Specific functions - need to be edited for each beamline
|
||||
|
||||
|
||||
def move_gap_if_needed(energy_ev, move_gap=False):
|
||||
"""
|
||||
Move the gap position based on energy if the move_gap flag is set.
|
||||
|
||||
Args:
|
||||
energy_ev (float): The energy value in electron volts (eV) used for gap movement.
|
||||
move_gap (bool): A flag indicating whether the gap position should be moved or not.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if move_gap:
|
||||
set_gap(energy_ev)
|
||||
else:
|
||||
print("Not moving gap.")
|
||||
|
||||
|
||||
# def get_roll(energy_ev):
|
||||
# """Calculates the roll based on calibration data."""
|
||||
# calib = Calibration()
|
||||
# roll = np.poly1d(calib.roll)(energy_ev)
|
||||
# if roll < 0:
|
||||
# return 0
|
||||
# if roll >= 9.95:
|
||||
# return 9.95
|
||||
# return float(roll)
|
||||
|
||||
|
||||
def get_dcm_motors_positions(energy_ev):
|
||||
"""
|
||||
Pitch and roll are calculated based on fits of the measured calibration values.
|
||||
Perp and Bragg are calculated based on the energy value via calculator.py.
|
||||
|
||||
Arguments:
|
||||
energy_ev (float): The energy value in electron volts for which the
|
||||
DCM motor positions are to be calculated.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the calculated DCM motor positions
|
||||
including values retrieved from the lookup table, Bragg angle
|
||||
in milliradians, and perpendicular position.
|
||||
"""
|
||||
# dcm_motor_values = get_value_from_lut(energy_ev)
|
||||
dcm_motor_values = {}
|
||||
# pitch = float(np.poly1d(Calibration.pitch)(energy_ev))
|
||||
pitch = -5.304
|
||||
roll = EnergyDefaults.mono_roll_value
|
||||
perp = calc_perp_position(energy_ev, print_result=False)
|
||||
bragg_angle = convert_from_energy(energy_ev, print_result=False)["bragg_angle_mrad"]
|
||||
dcm_motor_values.update(
|
||||
{
|
||||
"bragg_angle": bragg_angle,
|
||||
"perp": perp,
|
||||
"dcm_pitch": pitch,
|
||||
"dcm_roll": roll,
|
||||
}
|
||||
)
|
||||
return dcm_motor_values
|
||||
|
||||
|
||||
def move_dcm_motors(energy_ev):
|
||||
"""
|
||||
Move the DCM bragg, pitch and perp motors to the required positions
|
||||
for the given energy in eV.
|
||||
|
||||
"""
|
||||
dcm_pos = get_dcm_motors_positions(energy_ev)
|
||||
print(
|
||||
f"Moving DCM bragg: {dcm_pos['bragg_angle']: .5g} mrad, "
|
||||
f"DCM perp: {dcm_pos['perp']: .3g} mm, "
|
||||
f"DCM pitch fixed at -5.304 mrad, "
|
||||
# f"DCM pitch: {dcm_pos['dcm_pitch']: .5g} mrad, "
|
||||
f"DCM Roll: {dcm_pos['dcm_roll']:.5g} V"
|
||||
)
|
||||
# umv(EnergyDefaults.energy, dcm_pos["bragg_angle"])
|
||||
# umv(EnergyDefaults.mono_perp, dcm_pos["perp"])
|
||||
# umv(EnergyDefaults.mono_pitch, dcm_pos["dcm_pitch"])
|
||||
# umv(EnergyDefaults.mono_roll, dcm_pos["dcm_roll"])
|
||||
# print("\n***DCM Roll movement is currently disabled ***\n")
|
||||
umv(EnergyDefaults.energy, dcm_pos["bragg_angle"],
|
||||
EnergyDefaults.mono_perp, dcm_pos["perp"],
|
||||
EnergyDefaults.mono_pitch, dcm_pos["dcm_pitch"],
|
||||
EnergyDefaults.mono_roll, dcm_pos["dcm_roll"])
|
||||
|
||||
|
||||
def bl_energy(energy_ev, move_gap=False, mono_scan=True, plot=True):
|
||||
"""
|
||||
Adjusts the beamline's energy to the specified energy in electron volts (eV).
|
||||
The function validates the target energy, checks the current energy, and makes
|
||||
adjustments only if the energy difference is significant enough. It performs
|
||||
necessary operations including moving the gap, changing DCM motors, updating
|
||||
the mirror stripe, and scanning to find the optimal DCM pitch.
|
||||
|
||||
Args:
|
||||
energy_ev: Target energy in electron volts to which the beamline should be adjusted.
|
||||
move_gap: Boolean flag indicating whether to adjust the gap before setting energy.
|
||||
plot: Boolean flag indicating whether to plot the DCM pitch scan for finding the peak.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
energy_ev = validate_energy(energy_ev) # Ensure energy is valid.
|
||||
|
||||
# Check current energy to avoid unnecessary adjustments.
|
||||
|
||||
current_energy = get_current_energy()
|
||||
energy_diff = calculate_energy_difference(current_energy, energy_ev)
|
||||
|
||||
if energy_diff <= EnergyDefaults.min_energy_change:
|
||||
print(
|
||||
f"Energy change of {energy_diff:.2f} eV is too small, not changing energy."
|
||||
)
|
||||
return
|
||||
|
||||
# Step 1: Move the gap if needed.
|
||||
move_gap_if_needed(energy_ev, move_gap)
|
||||
|
||||
# Step 2: Move and set the DCM motors.
|
||||
move_dcm_motors(energy_ev)
|
||||
|
||||
# Step 3: Update the mirror stripe.
|
||||
set_mirror_stripe(energy_ev)
|
||||
|
||||
# Step 4: Perform DCM pitch scan and move to peak.
|
||||
if mono_scan:
|
||||
if plot:
|
||||
mono_pitch_scan(plot=True)
|
||||
else:
|
||||
mono_pitch_scan(plot=False)
|
||||
256
pxii_bec/macros/pxii_parameters.py
Executable file
256
pxii_bec/macros/pxii_parameters.py
Executable file
@@ -0,0 +1,256 @@
|
||||
"""File to store beamline parameters and defaults"""
|
||||
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class FitDefaults:
|
||||
"""Default values for fitting routines"""
|
||||
|
||||
# Constants for default models, baselines, and parameters
|
||||
MODEL = "Voigt"
|
||||
BASELINE = "Linear"
|
||||
SETTLE_TIME = 0.1
|
||||
RELATIVE_MODE = True
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class EnergyDefaults:
|
||||
"""Parameters for PXII energy changes"""
|
||||
|
||||
min_energy_change = 1
|
||||
min_energy_ev = 4800
|
||||
max_energy_ev = 30002
|
||||
beam_offset = 6
|
||||
signals = {
|
||||
"sig1": dev.lu_bpmsum,
|
||||
"sig2": dev.bsc_bpmsum,
|
||||
"sig3": dev.bcu_bpmsum,
|
||||
}
|
||||
energy = dev.dcm_bragg
|
||||
mono_pitch = dev.dcm_pitch
|
||||
mono_perp = dev.dcm_perp
|
||||
mono_roll = dev.dcm_froll
|
||||
mono_roll_value = 4.65
|
||||
LUT_table = "luts/energy_lut.csv"
|
||||
stripe_thresholds = {"silicon": 9000, "rhodium": 20000, "platinum": 40000}
|
||||
pitch_scan = {"halfwidth": 0.075, "steps": 20}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Calibration:
|
||||
"""Calibration parameters for PXII optics"""
|
||||
|
||||
pitch = np.array([4.61823701e-14, -1.97330772e-09, 2.89694543e-05, -5.34468669e00])
|
||||
roll = np.array([2.28291039e-03, -2.41928101e01])
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Gap:
|
||||
harmonics = {
|
||||
"H3": np.array([9.15e-04, 4.49e-01]),
|
||||
"H5": np.array([5.19e-04, 7.149e-01]),
|
||||
"H7": np.array([3.57694643e-04, 8.73775476e-01]),
|
||||
"H9": np.array([2.76335714e-04, 8.98471905e-01]),
|
||||
"H11": np.array([2.2225e-04, 9.582e-01]),
|
||||
"H13": np.array([1.9e-4, 9.262e-01]),
|
||||
"H15": np.array([1.67e-4, 8.83e-01]),
|
||||
}
|
||||
# Define harmonic ranges as a constant
|
||||
harmonic_ranges = {
|
||||
"H3": (4900, 7000),
|
||||
"H5": (7000, 10000),
|
||||
"H7": (10000, 13000),
|
||||
"H9": (13000, 16000),
|
||||
"H11": (16000, 19000),
|
||||
"H13": (19000, 22000),
|
||||
"H15": (22000, float("inf")),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def get_harmonic_by_energy(energy_ev: float):
|
||||
"""
|
||||
Determines the harmonic key based on the provided energy.
|
||||
|
||||
Args:
|
||||
energy_ev (float): The energy value (eV).
|
||||
|
||||
Returns:
|
||||
Optional[str]: The harmonic name (e.g., 'H3', 'H7') if the range matches, None otherwise.
|
||||
"""
|
||||
for harmonic, (low, high) in Gap.harmonic_ranges.items():
|
||||
if low < energy_ev <= high:
|
||||
return harmonic
|
||||
return None
|
||||
|
||||
def get_harmonic_values(self, energy_ev: float):
|
||||
"""
|
||||
Retrieves the harmonic array based on the energy value.
|
||||
|
||||
Args:
|
||||
energy_ev (float): The energy value (eV).
|
||||
|
||||
Returns:
|
||||
Optional[np.array]: The corresponding array of harmonic values if the range matches, None otherwise.
|
||||
"""
|
||||
harmonic = self.get_harmonic_by_energy(energy_ev)
|
||||
return self.harmonics.get(harmonic) if harmonic else None
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Harmonics:
|
||||
"""Anuschka's harmonics data for PXII U19 Undulator"""
|
||||
|
||||
min_gap_value = 4.5
|
||||
map = {
|
||||
3: np.array([1.07141725, -0.52834258]),
|
||||
4: np.array([0.007111, -0.13678409, 1.52295567, -1.06882785]),
|
||||
5: np.array([0.00315051, -0.0766359, 1.13107469, -0.86442062]),
|
||||
6: np.array([0.00162862, -0.04452336, 0.82948259, -0.37329674]),
|
||||
7: np.array([0.00080764, -0.02418882, 0.59212947, 0.15702886]),
|
||||
8: np.array([1.16699242e-03, -4.68207543e-02, 9.43972396e-01, -1.94201019e00]),
|
||||
9: np.array([0.00048419, -0.02010648, 0.55514114, -0.38180067]),
|
||||
10: np.array([2.11583333e-04, -8.03503571e-03, 3.43141595e-01, 6.02318000e-01]),
|
||||
11: np.array([0.00334392, -0.18405336, 3.58338994, -19.3640241]),
|
||||
12: np.array([3.20520798e-05, 2.39253145e-03, 8.09198503e-02, 2.22897377e00]),
|
||||
13: np.array([0.00278744, 0.07979874, 2.05143916]),
|
||||
}
|
||||
energy_ranges = {
|
||||
3: (0, 7),
|
||||
5: (7, 10),
|
||||
7: (10, 13),
|
||||
9: (13, 16),
|
||||
11: (16, 19),
|
||||
13: (19, 22),
|
||||
}
|
||||
high_energy = [(15, (23, 25)), (17, (25, 29)), (19, (29, float("inf")))]
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class CamConversion:
|
||||
"""Convert pixels to microns for sam cam"""
|
||||
|
||||
a = 0.5208
|
||||
b = 0.002586
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class BPMScans:
|
||||
"""Define the names of the motors and bpm channels"""
|
||||
|
||||
fe = {
|
||||
"x_name": dev.fe_bpm_x.name,
|
||||
"y_name": dev.fe_bpm_y.name,
|
||||
"z1_name": dev.fe_bpm1.name,
|
||||
"z2_name": dev.fe_bpm2.name,
|
||||
"z3_name": dev.fe_bpm3.name,
|
||||
"z4_name": dev.fe_bpm3.name,
|
||||
"z5_name": dev.fe_bpmsum.name,
|
||||
"x_device": dev.fe_bpm_x,
|
||||
"y_device": dev.fe_bpm_y,
|
||||
}
|
||||
lu = {
|
||||
"x_name": dev.lu_bpm_x.name,
|
||||
"y_name": dev.lu_bpm_y.name,
|
||||
"z1_name": dev.lu_bpm1.name,
|
||||
"z2_name": dev.lu_bpm2.name,
|
||||
"z3_name": dev.lu_bpm3.name,
|
||||
"z4_name": dev.lu_bpm4.name,
|
||||
"z5_name": dev.lu_bpmsum.name,
|
||||
"x_device": dev.lu_bpm_x,
|
||||
"y_device": dev.lu_bpm_y,
|
||||
}
|
||||
bsc = {
|
||||
"x_name": dev.bsc_bpm_x.name,
|
||||
"y_name": dev.bsc_bpm_y.name,
|
||||
"z1_name": dev.bsc_bpm1.name,
|
||||
"z2_name": dev.bsc_bpm2.name,
|
||||
"z3_name": dev.bsc_bpm3.name,
|
||||
"z4_name": dev.bsc_bpm4.name,
|
||||
"z5_name": dev.bsc_bpmsum.name,
|
||||
"x_device": dev.bsc_bpm_x,
|
||||
"y_device": dev.bsc_bpm_y,
|
||||
}
|
||||
bcu = {
|
||||
"x_name": dev.bcu_bpm_x.name,
|
||||
"y_name": dev.bcu_bpm_y.name,
|
||||
"z1_name": dev.bcu_bpm1.name,
|
||||
"z2_name": dev.bcu_bpm2.name,
|
||||
"z3_name": dev.bcu_bpm3.name,
|
||||
"z4_name": dev.bcu_bpm4.name,
|
||||
"z5_name": dev.bcu_bpmsum.name,
|
||||
"x_device": dev.bcu_bpm_x,
|
||||
"y_device": dev.bcu_bpm_y,
|
||||
}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class MirrorConfig:
|
||||
"""Define the names of the mirror channels"""
|
||||
|
||||
hfm = {
|
||||
"bu_name": dev.hfm_bu.name,
|
||||
"bd_name": dev.hfm_bd.name,
|
||||
"z_name": dev.samcam_xsig.name,
|
||||
"x_device": dev.hfm_bu,
|
||||
"y_device": dev.hfm_bd,
|
||||
}
|
||||
vfm = {
|
||||
"bu_name": dev.vfm_bu.name,
|
||||
"bd_name": dev.vfm_bd.name,
|
||||
"z_name": dev.samcam_ysig.name,
|
||||
"x_device": dev.vfm_bu,
|
||||
"y_device": dev.vfm_bd,
|
||||
}
|
||||
|
||||
from typing import Callable
|
||||
@dataclass
|
||||
class Target:
|
||||
inpos: float
|
||||
outpos: float
|
||||
tol: float
|
||||
mot: str
|
||||
reader: Callable[[], float]
|
||||
|
||||
@property
|
||||
def actual(self):
|
||||
return self.reader()
|
||||
|
||||
def checkpos(self):
|
||||
return abs(self.actual - self.inpos) <= self.tol
|
||||
|
||||
def mvin(self):
|
||||
umv(self.mot, self.inpos)
|
||||
|
||||
def mvout(self):
|
||||
umv(self.mot, self.outpos)
|
||||
|
||||
|
||||
@dataclass
|
||||
class GroupTarget:
|
||||
def __init__(self, **targets: Target):
|
||||
self.targets = targets
|
||||
def checkpos(self):
|
||||
return all(t.checkpos() for t in self.targets.values())
|
||||
def report(self):
|
||||
return {name: t.checkpos() for name, t in self.targets.items()}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class SE:
|
||||
"""Define settings for scintillator, collimator, i1"""
|
||||
scin = Target(38.6, 20.0, 0.1, dev.scin_y, lambda: dev.scin_y.read()['scin_y']['value'])
|
||||
i1 = Target(44.0, 20.0, 0.2, dev.scin_y, lambda: dev.scin_y.read()['scin_y']['value'])
|
||||
colly = Target(41.5, 20.0, 0.05, dev.coll_y, lambda: dev.coll_y.read()['coll_y']['value'])
|
||||
bsy = Target(0.1, -0.9, 0.05, dev.bs_y, lambda: dev.bs_y.read()['bs_y']['value'])
|
||||
bsx = Target(2.45, 2.45, 0.05, dev.bs_x, lambda: dev.bs_x.read()['bs_x']['value'])
|
||||
# coll = GroupTarget(
|
||||
# x = Target(0.0517, 0.0517, 0.02, dev.coll_x, lambda: dev.coll_x.read()['coll_x']['value']),
|
||||
# y = Target(41.5, 20.0, 0.05, dev.coll_y, lambda: dev.coll_y.read()['coll_y']['value']),
|
||||
# )
|
||||
# bs = GroupTarget(
|
||||
# x = Target(2.65, 2.65, 0.05, dev.bs_x, lambda: dev.bs_x.read()['bs_x']['value']),
|
||||
# y = Target(0.1, 0.1, 0.05, dev.bs_y, lambda: dev.bs_y.read()['bs_y']['value'])
|
||||
# )
|
||||
|
||||
Reference in New Issue
Block a user