mirror of
https://github.com/bec-project/ophyd_devices.git
synced 2025-07-09 02:08:04 +02:00
refactor: remove sleep from trigger, and adressed MR comments in sim_data
This commit is contained in:
@ -195,7 +195,7 @@ class SimCamera(Device):
|
||||
save_file = Cpt(SetableSignal, name="save_file", value=False, kind=Kind.config)
|
||||
|
||||
# image shape, only adjustable via config.
|
||||
image_shape = Cpt(ReadOnlySignal, name="image_shape", value=SHAPE, kind=Kind.config)
|
||||
image_shape = Cpt(SetableSignal, name="image_shape", value=SHAPE, kind=Kind.config)
|
||||
image = Cpt(
|
||||
ComputedReadOnlySignal,
|
||||
name="image",
|
||||
@ -232,7 +232,6 @@ class SimCamera(Device):
|
||||
for _ in range(self.burst.get()):
|
||||
# Send data for each trigger
|
||||
self._run_subs(sub_type=self.SUB_MONITOR, value=self.image.get())
|
||||
ttime.sleep(self.exp_time.get())
|
||||
if self._stopped:
|
||||
raise DeviceStop
|
||||
except DeviceStop:
|
||||
|
@ -50,30 +50,39 @@ class SimulatedDataBase:
|
||||
|
||||
This methods should be implemented by the subclass.
|
||||
|
||||
It should set the default parameters for:
|
||||
- self._params (dict used for e.g. computation of gaussian)
|
||||
- self._simulation_type (SimulationType, e.g. 'constant', 'gauss').
|
||||
- self._noise (NoiseType, e.g. 'none', 'uniform', 'poisson')
|
||||
|
||||
It sets the default parameters for the simulated data,
|
||||
in self._params that are required for the simulation of for instance
|
||||
the siumulation type gaussian.
|
||||
It sets the default parameters for the simulated data in
|
||||
self._params and calls self._update_init_params()
|
||||
"""
|
||||
|
||||
def get_sim_params(self) -> dict:
|
||||
"""Return the parameters self._params of the simulation."""
|
||||
"""Return the currently parameters for the active simulation type in sim_type.
|
||||
|
||||
These parameters can be changed with set_sim_params.
|
||||
|
||||
Returns:
|
||||
dict: Parameters of the currently active simulation in sim_type.
|
||||
"""
|
||||
return self._active_params
|
||||
|
||||
def set_sim_params(self, params: dict) -> None:
|
||||
"""Set the parameters self._params of the simulation."""
|
||||
"""Change the current set of parameters for the active simulation type.
|
||||
|
||||
Args:
|
||||
params (dict): New parameters for the active simulation type.
|
||||
|
||||
Raises:
|
||||
SimulatedDataException: If the new parameters can not be set or is not part of the parameters initiated.
|
||||
"""
|
||||
for k, v in params.items():
|
||||
try:
|
||||
self._active_params[k] = v
|
||||
except KeyError:
|
||||
# TODO propagate msg to client!
|
||||
logger.warning(
|
||||
f"Could not set {k} to {v} in {self._active_params}.KeyError raised. Ignoring."
|
||||
)
|
||||
if k == "noise":
|
||||
self._active_params[k] = NoiseType(v)
|
||||
else:
|
||||
self._active_params[k] = v
|
||||
except Exception as exc:
|
||||
raise SimulatedDataException(
|
||||
f"Could not set {k} to {v} in {self._active_params} with exception {exc}"
|
||||
) from exc
|
||||
|
||||
def get_sim_type(self) -> SimulationType:
|
||||
"""Return the simulation type of the simulation.
|
||||
@ -87,11 +96,11 @@ class SimulatedDataBase:
|
||||
"""Set the simulation type of the simulation."""
|
||||
try:
|
||||
self._simulation_type = SimulationType(simulation_type)
|
||||
except ValueError:
|
||||
except ValueError as exc:
|
||||
raise SimulatedDataException(
|
||||
f"Could not set simulation type to {simulation_type}. Valid options are 'constant'"
|
||||
" and 'gauss'"
|
||||
)
|
||||
) from exc
|
||||
self._active_params = self._all_params.get(self._simulation_type, None)
|
||||
|
||||
def _compute_sim_state(self, signal_name: str) -> None:
|
||||
@ -110,19 +119,49 @@ class SimulatedDataBase:
|
||||
self.sim_state[signal_name]["value"] = value
|
||||
self.sim_state[signal_name]["timestamp"] = ttime.time()
|
||||
|
||||
def _update_init_params(self, sim_type_default: SimulationType) -> None:
|
||||
"""Update the initial parameters of the simulated data with input from deviceConfig.
|
||||
|
||||
Args:
|
||||
sim_type_default (SimulationType): Default simulation type to use if not specified in deviceConfig.
|
||||
"""
|
||||
init_params = self.parent.init_sim_params
|
||||
for sim_type in self._all_params.values():
|
||||
for sim_type_config_element in sim_type:
|
||||
if init_params:
|
||||
if sim_type_config_element in init_params:
|
||||
sim_type[sim_type_config_element] = init_params[sim_type_config_element]
|
||||
# Set simulation type to default if not specified in deviceConfig
|
||||
sim_type_select = (
|
||||
init_params.get("sim_type", sim_type_default) if init_params else sim_type_default
|
||||
)
|
||||
self.set_sim_type(sim_type_select)
|
||||
|
||||
|
||||
class SimulatedDataMonitor(SimulatedDataBase):
|
||||
"""Simulated data for a monitor."""
|
||||
|
||||
def init_paramaters(self, **kwargs):
|
||||
"""Initialize the parameters for the Simulated Data
|
||||
"""Initialize the parameters for the simulated data
|
||||
|
||||
Ref_motor is the motor that is used to compute the gaussian.
|
||||
Amp is the amplitude of the gaussian.
|
||||
Cen is the center of the gaussian.
|
||||
Sig is the sigma of the gaussian.
|
||||
Noise is the type of noise to add to the signal. Be aware that poisson noise will round the value to an integer-like values.
|
||||
Noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||
This method will fill self._all_params with the default parameters for
|
||||
SimulationType.CONSTANT and SimulationType.GAUSSIAN.
|
||||
New simulation types can be added by adding a new key to self._all_params,
|
||||
together with the required parameters for that simulation type. Please
|
||||
also complement the docstring of this method with the new simulation type.
|
||||
|
||||
For SimulationType.CONSTANT:
|
||||
Amp is the amplitude of the constant value.
|
||||
Noise is the type of noise to add to the signal. Available options are 'poisson', 'uniform' or 'none'.
|
||||
Noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||
|
||||
For SimulationType.GAUSSIAN:
|
||||
ref_motor is the motor that is used as reference to compute the gaussian.
|
||||
amp is the amplitude of the gaussian.
|
||||
cen is the center of the gaussian.
|
||||
sig is the sigma of the gaussian.
|
||||
noise is the type of noise to add to the signal. Available options are 'poisson', 'uniform' or 'none'.
|
||||
noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||
"""
|
||||
self._all_params = {
|
||||
SimulationType.CONSTANT: {
|
||||
@ -139,23 +178,17 @@ class SimulatedDataMonitor(SimulatedDataBase):
|
||||
"noise_multiplier": 0.1,
|
||||
},
|
||||
}
|
||||
|
||||
if self.parent.init_sim_params:
|
||||
sim_type = self.parent.init_sim_params.pop("sym_type", SimulationType.CONSTANT)
|
||||
for v in self._all_params.values():
|
||||
for k in v.keys():
|
||||
if k in self.parent.init_sim_params:
|
||||
v[k] = self.parent.init_sim_params[k]
|
||||
else:
|
||||
sim_type = SimulationType.CONSTANT
|
||||
self.set_sim_type(sim_type)
|
||||
# Update init parameters and set simulation type to Constant if not specified otherwise in init_sim_params
|
||||
self._update_init_params(sim_type_default=SimulationType.CONSTANT)
|
||||
|
||||
def _compute_sim_state(self, signal_name: str) -> None:
|
||||
"""Update the simulated state of the device.
|
||||
|
||||
It will update the value in self.sim_state with the value computed by
|
||||
the chosen simulation type.
|
||||
|
||||
Args:
|
||||
signal_name (str): Name of the signal to update.
|
||||
sim_type (SimulationType, optional): Type of simulation to steer simulated data. Defaults to SimulationType.CONSTANT.
|
||||
"""
|
||||
if self.get_sim_type() == SimulationType.CONSTANT:
|
||||
value = self._compute_constant()
|
||||
@ -165,14 +198,17 @@ class SimulatedDataMonitor(SimulatedDataBase):
|
||||
self.update_sim_state(signal_name, value)
|
||||
|
||||
def _compute_constant(self) -> float:
|
||||
"""Compute a random value."""
|
||||
"""Computes constant value and adds noise if activated."""
|
||||
v = self._active_params["amp"]
|
||||
if self._active_params["noise"] == NoiseType.POISSON:
|
||||
v = np.random.poisson(np.round(v), 1)[0]
|
||||
return v
|
||||
elif self._active_params["noise"] == NoiseType.UNIFORM:
|
||||
v += np.random.uniform(-1, 1) * self._active_params["noise_multiplier"]
|
||||
return v
|
||||
elif self._active_params["noise"] == NoiseType.NONE:
|
||||
v = self._active_params["amp"]
|
||||
return v
|
||||
else:
|
||||
# TODO Propagate msg to client!
|
||||
logger.warning(
|
||||
@ -180,15 +216,17 @@ class SimulatedDataMonitor(SimulatedDataBase):
|
||||
" 'uniform' or 'none'. Returning 0."
|
||||
)
|
||||
return 0
|
||||
return v
|
||||
|
||||
def _compute_gaussian(self) -> float:
|
||||
"""Compute a gaussian value.
|
||||
"""Computes return value for sim_type = "gauss".
|
||||
|
||||
Based on the parameters in self._params, a value of a gaussian distributed
|
||||
is computed with respected to the motor position of ref_motor.
|
||||
The value is based on the parameters for the gaussian in
|
||||
self._active_params and the position of the ref_motor
|
||||
and adds noise based on the noise type.
|
||||
|
||||
If computation fails, it returns 0.
|
||||
|
||||
Returns: float
|
||||
"""
|
||||
|
||||
params = self._active_params
|
||||
@ -214,10 +252,31 @@ class SimulatedDataMonitor(SimulatedDataBase):
|
||||
|
||||
|
||||
class SimulatedDataCamera(SimulatedDataBase):
|
||||
"""Simulated data for a 2D camera."""
|
||||
"""Simulated class to compute data for a 2D camera."""
|
||||
|
||||
def init_paramaters(self, **kwargs):
|
||||
"""Initialize the parameters for the simulated camera data"""
|
||||
"""Initialize the parameters for the simulated data
|
||||
|
||||
This method will fill self._all_params with the default parameters for
|
||||
SimulationType.CONSTANT and SimulationType.GAUSSIAN.
|
||||
New simulation types can be added by adding a new key to self._all_params,
|
||||
together with the required parameters for that simulation type. Please
|
||||
also complement the docstring of this method with the new simulation type.
|
||||
|
||||
For SimulationType.CONSTANT:
|
||||
Amp is the amplitude of the constant value.
|
||||
Noise is the type of noise to add to the signal. Available options are 'poisson', 'uniform' or 'none'.
|
||||
Noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||
|
||||
For SimulationType.GAUSSIAN:
|
||||
amp is the amplitude of the gaussian.
|
||||
cen_off is the pixel offset from the center of the gaussian from the center of the image.
|
||||
It is passed as a numpy array.
|
||||
cov is the 2D covariance matrix used to specify the shape of the gaussian.
|
||||
It is a 2x2 matrix and will be passed as a numpy array.
|
||||
noise is the type of noise to add to the signal. Available options are 'poisson', 'uniform' or 'none'.
|
||||
noise multiplier is the multiplier of the noise, only relevant for uniform noise.
|
||||
"""
|
||||
self._all_params = {
|
||||
SimulationType.CONSTANT: {
|
||||
"amp": 100,
|
||||
@ -226,29 +285,23 @@ class SimulatedDataCamera(SimulatedDataBase):
|
||||
},
|
||||
SimulationType.GAUSSIAN: {
|
||||
"amp": 100,
|
||||
"cen": np.array([50, 50]),
|
||||
"cov": np.array([[10, 0], [0, 10]]),
|
||||
"cen_off": np.array([0, 0]),
|
||||
"cov": np.array([[10, 5], [5, 10]]),
|
||||
"noise": NoiseType.NONE,
|
||||
"noise_multiplier": 0.1,
|
||||
},
|
||||
}
|
||||
|
||||
if self.parent.init_sim_params:
|
||||
sim_type = self.parent.init_sim_params.pop("sym_type", SimulationType.CONSTANT)
|
||||
for v in self._all_params.values():
|
||||
for k in v.keys():
|
||||
if k in self.parent.init_sim_params:
|
||||
v[k] = self.parent.init_sim_params[k]
|
||||
else:
|
||||
sim_type = SimulationType.CONSTANT
|
||||
self.set_sim_type(sim_type)
|
||||
# Update init parameters and set simulation type to Gaussian if not specified otherwise in init_sim_params
|
||||
self._update_init_params(sim_type_default=SimulationType.GAUSSIAN)
|
||||
|
||||
def _compute_sim_state(self, signal_name: str) -> None:
|
||||
"""Update the simulated state of the device.
|
||||
|
||||
It will update the value in self.sim_state with the value computed by
|
||||
the chosen simulation type.
|
||||
|
||||
Args:
|
||||
signal_name (str): Name of the signal to update.
|
||||
sim_type (SimulationType, optional): Type of simulation to steer simulated data. Defaults to SimulationType.CONSTANT.
|
||||
"""
|
||||
if self.get_sim_type() == SimulationType.CONSTANT:
|
||||
value = self._compute_constant()
|
||||
@ -258,61 +311,76 @@ class SimulatedDataCamera(SimulatedDataBase):
|
||||
self.update_sim_state(signal_name, value)
|
||||
|
||||
def _compute_constant(self) -> float:
|
||||
"""Compute a random value."""
|
||||
"""Compute a return value for sim_type = Constant."""
|
||||
|
||||
# tuple with shape
|
||||
shape = self.sim_state[self.parent.image_shape.name]["value"]
|
||||
v = self._active_params["amp"] * np.ones(shape, dtype=np.uint16)
|
||||
if self._active_params["noise"] == NoiseType.POISSON:
|
||||
v = np.random.poisson(np.round(v), v.shape)
|
||||
return v
|
||||
elif self._active_params["noise"] == NoiseType.UNIFORM:
|
||||
if self._active_params["noise"] == NoiseType.UNIFORM:
|
||||
multiplier = self._active_params["noise_multiplier"]
|
||||
v += np.random.randint(-multiplier, multiplier, v.shape)
|
||||
return v
|
||||
elif self._active_params["noise"] == NoiseType.NONE:
|
||||
if self._active_params["noise"] == NoiseType.NONE:
|
||||
return v
|
||||
else:
|
||||
# TODO Propagate msg to client!
|
||||
logger.warning(
|
||||
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
|
||||
" 'uniform' or 'none'. Returning 0."
|
||||
)
|
||||
return 0
|
||||
# TODO Propagate msg to client!
|
||||
logger.warning(
|
||||
f"Unknown noise type {self._active_params['noise']}. Please choose from 'poisson',"
|
||||
" 'uniform' or 'none'. Returning 0."
|
||||
)
|
||||
return 0
|
||||
|
||||
def _compute_multivariate_gaussian(self, pos: np.ndarray, cen: np.ndarray, cov: np.ndarray):
|
||||
"""Return the multivariate Gaussian distribution on array pos."""
|
||||
def _compute_multivariate_gaussian(
|
||||
self, pos: np.ndarray, cen_off: np.ndarray, cov: np.ndarray
|
||||
) -> np.ndarray:
|
||||
"""Computes and returns the multivariate Gaussian distribution.
|
||||
|
||||
dim = cen.shape[0]
|
||||
Args:
|
||||
pos (np.ndarray): Position of the gaussian.
|
||||
cen_off (np.ndarray): Offset from cener of image for the gaussian.
|
||||
cov (np.ndarray): Covariance matrix of the gaussian.
|
||||
|
||||
Returns:
|
||||
np.ndarray: Multivariate Gaussian distribution.
|
||||
"""
|
||||
|
||||
dim = cen_off.shape[0]
|
||||
cov_det = np.linalg.det(cov)
|
||||
cov_inv = np.linalg.inv(cov)
|
||||
N = np.sqrt((2 * np.pi) ** dim * cov_det)
|
||||
# This einsum call calculates (x-mu)T.Sigma-1.(x-mu) in a vectorized
|
||||
# way across all the input variables.
|
||||
fac = np.einsum("...k,kl,...l->...", pos - cen, cov_inv, pos - cen)
|
||||
fac = np.einsum("...k,kl,...l->...", pos - cen_off, cov_inv, pos - cen_off)
|
||||
|
||||
return np.exp(-fac / 2) / N
|
||||
|
||||
def _compute_gaussian(self) -> float:
|
||||
"""Compute a gaussian value.
|
||||
"""Computes return value for sim_type = "gauss".
|
||||
|
||||
Based on the parameters in self._params, a value of a gaussian distributed
|
||||
is computed with respected to the motor position of ref_motor.
|
||||
The value is based on the parameters for the gaussian in
|
||||
self._active_params and adds noise based on the noise type.
|
||||
|
||||
If computation fails, it returns 0.
|
||||
|
||||
Returns: float
|
||||
"""
|
||||
|
||||
params = self._active_params
|
||||
shape = self.sim_state[self.parent.image_shape.name]["value"]
|
||||
try:
|
||||
X, Y = np.meshgrid(
|
||||
np.linspace(0, shape[0] - 1, shape[0]),
|
||||
np.linspace(0, shape[1] - 1, shape[1]),
|
||||
np.linspace(-shape[0] / 2, shape[0] / 2, shape[0]),
|
||||
np.linspace(-shape[1] / 2, shape[1] / 2, shape[1]),
|
||||
)
|
||||
pos = np.empty((*X.shape, 2))
|
||||
pos[:, :, 0] = X
|
||||
pos[:, :, 1] = Y
|
||||
|
||||
v = self._compute_multivariate_gaussian(pos=pos, cen=params["cen"], cov=params["cov"])
|
||||
v = self._compute_multivariate_gaussian(
|
||||
pos=pos, cen_off=params["cen_off"], cov=params["cov"]
|
||||
)
|
||||
# divide by max(v) to ensure that maximum is params["amp"]
|
||||
v *= params["amp"] / np.max(v)
|
||||
|
||||
@ -324,10 +392,12 @@ class SimulatedDataCamera(SimulatedDataBase):
|
||||
if params["noise"] == NoiseType.POISSON:
|
||||
v = np.random.poisson(np.round(v), v.shape)
|
||||
return v
|
||||
elif params["noise"] == NoiseType.UNIFORM:
|
||||
if params["noise"] == NoiseType.UNIFORM:
|
||||
multiplier = params["noise_multiplier"]
|
||||
v += np.random.uniform(-multiplier, multiplier, v.shape)
|
||||
return v
|
||||
if self._active_params["noise"] == NoiseType.NONE:
|
||||
return v
|
||||
except SimulatedDataException as exc:
|
||||
# TODO Propagate msg to client!
|
||||
logger.warning(
|
||||
|
Reference in New Issue
Block a user