feat: flomni stages

This commit is contained in:
2023-12-12 09:13:58 +01:00
committed by wakonig_k
parent 0ac0f1426c
commit 09a8b38883
13 changed files with 1839 additions and 48 deletions

View File

@ -1,9 +1,11 @@
from .eiger1p5m_csaxs.eiger1p5m import Eiger1p5MDetector
from .epics import *
from .galil.fgalil_ophyd import FlomniGalilMotor
from .galil.fupr_ophyd import FuprGalilMotor
from .galil.galil_ophyd import GalilMotor
from .galil.sgalil_ophyd import SGalilMotor
from .npoint.npoint import NPointAxis
from .rt_lamni import RtLamniMotor
from .rt_lamni import RtFlomniMotor, RtLamniMotor
from .sim.sim import (
SynAxisMonitor,
SynAxisOPAAS,

View File

@ -4,6 +4,7 @@ from ophyd.quadem import QuadEM
from ophyd.sim import SynAxis, SynPeriodicSignal, SynSignal
from .devices.delay_generator_csaxs import DelayGeneratorcSAXS
from .devices.flomni_sample_storage import FlomniSampleStorage
from .devices.InsertionDevice import InsertionDevice
from .devices.slits import SlitH, SlitV
from .devices.specMotors import (
@ -20,7 +21,7 @@ from .devices.specMotors import (
PmMonoBender,
)
from .devices.SpmBase import SpmBase
from .devices.XbpmBase import XbpmBase, XbpmCsaxsOp
# X07MA specific devices
from .devices.X07MADevices import *
from .devices.XbpmBase import XbpmBase, XbpmCsaxsOp

View File

@ -1,7 +1,19 @@
from .slits import SlitH, SlitV
from .XbpmBase import XbpmBase, XbpmCsaxsOp
from .SpmBase import SpmBase
# Standard ophyd classes
from ophyd import EpicsMotor, EpicsSignal, EpicsSignalRO
from ophyd.quadem import QuadEM
from ophyd.sim import SynAxis, SynPeriodicSignal, SynSignal
from .DelayGeneratorDG645 import DelayGeneratorDG645
from .eiger9m_csaxs import Eiger9McSAXS
# cSAXS
from .epics_motor_ex import EpicsMotorEx
from .falcon_csaxs import FalconcSAXS
from .flomni_sample_storage import FlomniSampleStorage
from .InsertionDevice import InsertionDevice
from .mcs_csaxs import McsCsaxs
from .pilatus_csaxs import PilatuscSAXS
from .slits import SlitH, SlitV
from .specMotors import (
Bpm4i,
EnergyKev,
@ -15,19 +27,5 @@ from .specMotors import (
PmDetectorRotation,
PmMonoBender,
)
# Standard ophyd classes
from ophyd import EpicsSignal, EpicsSignalRO, EpicsMotor
from ophyd.sim import SynAxis, SynSignal, SynPeriodicSignal
from ophyd.quadem import QuadEM
# cSAXS
from .epics_motor_ex import EpicsMotorEx
from .mcs_csaxs import MCScSAXS
from .psi_detector_base import PSIDetectorBase, CustomDetectorMixin
from .eiger9m_csaxs import Eiger9McSAXS
from .pilatus_csaxs import PilatuscSAXS
from .falcon_csaxs import FalconcSAXS
from .delay_generator_csaxs import DelayGeneratorcSAXS
# from .psi_detector_base import PSIDetectorBase, CustomDetectorMixin
from .SpmBase import SpmBase
from .XbpmBase import XbpmBase, XbpmCsaxsOp

View File

@ -0,0 +1,82 @@
import time
from ophyd import Component as Cpt
from ophyd import Device
from ophyd import DynamicDeviceComponent as Dcpt
from ophyd import EpicsSignal
class FlomniSampleStorageError(Exception):
pass
class FlomniSampleStorage(Device):
USER_ACCESS = [
"is_sample_slot_used",
"is_sample_in_gripper",
"set_sample_slot",
"unset_sample_slot",
"set_sample_in_gripper",
"unset_sample_in_gripper",
]
SUB_VALUE = "value"
_default_sub = SUB_VALUE
sample_placed = {
f"sample{i}": (EpicsSignal, f"XOMNY-SAMPLE_DB_flomni{i}:GET", {}) for i in range(21)
}
sample_placed = Dcpt(sample_placed)
sample_names = {
f"sample{i}": (EpicsSignal, f"XOMNY-SAMPLE_DB_flomni{i}:GET.DESC", {"string": True})
for i in range(21)
}
sample_names = Dcpt(sample_names)
sample_in_gripper = Cpt(
EpicsSignal, name="sample_in_gripper", read_pv="XOMNY-SAMPLE_DB_flomni100:GET"
)
sample_in_gripper_name = Cpt(
EpicsSignal,
name="sample_in_gripper_name",
read_pv="XOMNY-SAMPLE_DB_flomni100:GET.DESC",
string=True,
)
def __init__(self, prefix="", *, name, **kwargs):
super().__init__(prefix, name=name, **kwargs)
self.sample_placed.sample1.subscribe(self._emit_value)
def _emit_value(self, **kwargs):
timestamp = kwargs.pop("timestamp", time.time())
self.wait_for_connection()
self._run_subs(sub_type=self.SUB_VALUE, timestamp=timestamp, obj=self)
def set_sample_slot(self, slot_nr: int, name: str) -> bool:
if slot_nr > 20:
raise FlomniSampleStorageError(f"Invalid slot number {slot_nr}.")
getattr(self.sample_placed, f"sample{slot_nr}").set(1)
getattr(self.sample_names, f"sample{slot_nr}").set(name)
def unset_sample_slot(self, slot_nr: int) -> bool:
if slot_nr > 20:
raise FlomniSampleStorageError(f"Invalid slot number {slot_nr}.")
getattr(self.sample_placed, f"sample{slot_nr}").set(0)
getattr(self.sample_names, f"sample{slot_nr}").set("-")
def set_sample_in_gripper(self, name: str) -> bool:
self.sample_in_gripper.set(1)
self.sample_in_gripper_name.set(name)
def unset_sample_in_gripper(self) -> bool:
self.sample_in_gripper.set(0)
self.sample_in_gripper_name.set("-")
def is_sample_slot_used(self, slot_nr: int) -> bool:
val = getattr(self.sample_placed, f"sample{slot_nr}").get()
return bool(val)
def is_sample_in_gripper(self) -> bool:
val = self.sample_in_gripper.get()
return bool(val)

View File

@ -9,8 +9,6 @@ from ophyd import Component as Cpt
from ophyd import Device, PositionerBase, Signal
from ophyd.status import wait as status_wait
from ophyd.utils import LimitError, ReadOnlyError
from prettytable import PrettyTable
from ophyd_devices.galil.galil_ophyd import (
BECConfigError,
GalilAxesReferenced,
@ -21,15 +19,31 @@ from ophyd_devices.galil.galil_ophyd import (
GalilMotorResolution,
GalilReadbackSignal,
GalilSetpointSignal,
GalilSignalRO,
retry_once,
)
from ophyd_devices.utils.controller import Controller, threadlocked
from ophyd_devices.utils.socket import SocketIO, SocketSignal, raise_if_disconnected
from prettytable import PrettyTable
logger = bec_logger.logger
class FlomniGalilController(GalilController):
USER_ACCESS = [
"describe",
"show_running_threads",
"galil_show_all",
"socket_put_and_receive",
"socket_put_confirmed",
"drive_axis_to_limit",
"find_reference",
"get_motor_limit_switch",
"fosaz_light_curtain_is_triggered",
"is_motor_on",
"all_axes_referenced",
]
def is_axis_moving(self, axis_Id, axis_Id_numeric) -> bool:
if axis_Id is None and axis_Id_numeric is not None:
axis_Id = self.axis_Id_numeric_to_alpha(axis_Id_numeric)
@ -41,13 +55,67 @@ class FlomniGalilController(GalilController):
# TODO: check if all axes are referenced in all controllers
return super().all_axes_referenced()
def fosaz_light_curtain_is_triggered(self) -> bool:
"""
Check the light curtain status for fosaz
class FlomniGalilReadbackSignal(GalilReadbackSignal):
pass
Returns:
bool: True if the light curtain is triggered
"""
return int(float(self.socket_put_and_receive("MG @IN[14]").strip())) == 1
class FlomniGalilReadbackSignal(GalilSignalRO):
@retry_once
@threadlocked
def _socket_get(self) -> float:
"""Get command for the readback signal
Returns:
float: Readback value after adjusting for sign and motor resolution.
"""
current_pos = float(self.controller.socket_put_and_receive(f"TD{self.parent.axis_Id}"))
current_pos *= self.parent.sign
step_mm = self.parent.motor_resolution.get()
return current_pos / step_mm
def read(self):
self._metadata["timestamp"] = time.time()
val = super().read()
return val
class FlomniGalilSetpointSignal(GalilSetpointSignal):
pass
@retry_once
@threadlocked
def _socket_set(self, val: float) -> None:
"""Set a new target value / setpoint value. Before submission, the target value is adjusted for the axis' sign.
Furthermore, it is ensured that all axes are referenced before a new setpoint is submitted.
Args:
val (float): Target value / setpoint value
Raises:
GalilError: Raised if not all axes are referenced.
"""
target_val = val * self.parent.sign
self.setpoint = target_val
axes_referenced = self.controller.all_axes_referenced()
if axes_referenced:
while self.controller.is_thread_active(0):
time.sleep(0.1)
self.controller.socket_put_confirmed(f"naxis={self.parent.axis_Id_numeric}")
self.controller.socket_put_confirmed(f"ntarget={target_val:.3f}")
self.controller.socket_put_confirmed("movereq=1")
self.controller.socket_put_confirmed("XQ#NEWPAR")
while self.controller.is_thread_active(0):
time.sleep(0.005)
else:
raise GalilError("Not all axes are referenced.")
class FlomniGalilMotorResolution(GalilMotorResolution):
@ -65,7 +133,7 @@ class FlomniGalilAxesReferenced(GalilAxesReferenced):
class FlomniGalilMotor(Device, PositionerBase):
USER_ACCESS = ["controller"]
readback = Cpt(
GalilReadbackSignal,
FlomniGalilReadbackSignal,
signal_name="readback",
kind="hinted",
)
@ -115,6 +183,7 @@ class FlomniGalilMotor(Device, PositionerBase):
"device_mapping has been specified but the device_manager cannot be accessed."
)
self.rt = self.device_mapping.get("rt")
self.pid_x_correction = 0
super().__init__(
prefix,

View File

@ -63,6 +63,18 @@ class FuprGalilReadbackSignal(GalilReadbackSignal):
step_mm = self.parent.motor_resolution.get()
return current_pos / step_mm
def read(self):
self._metadata["timestamp"] = time.time()
val = super().read()
if self.parent.axis_Id_numeric == 0:
try:
rt = self.parent.device_manager.devices[self.parent.rt]
if rt.enabled:
rt.obj.controller.set_rotation_angle(val[self.parent.name]["value"])
except KeyError:
logger.warning("Failed to set RT value during readback.")
return val
class FuprGalilSetpointSignal(GalilSetpointSignal):
@retry_once

View File

@ -52,6 +52,11 @@ class GalilController(Controller):
"socket_put_and_receive",
"socket_put_confirmed",
"lgalil_is_air_off_and_orchestra_enabled",
"drive_axis_to_limit",
"find_reference",
"get_motor_limit_switch",
"is_motor_on",
"all_axes_referenced",
]
@threadlocked
@ -143,10 +148,11 @@ class GalilController(Controller):
self.socket_put_confirmed(f"naxis={axis_Id_numeric}")
self.socket_put_confirmed(f"ndir={direction_flag}")
self.socket_put_confirmed("XQ#NEWPAR")
time.sleep(0.005)
self.socket_put_confirmed("XQ#FES")
time.sleep(0.1)
time.sleep(0.01)
while self.is_axis_moving(None, axis_Id_numeric):
time.sleep(0.1)
time.sleep(0.01)
axis_Id = self.axis_Id_numeric_to_alpha(axis_Id_numeric)
# check if we actually hit the limit

View File

@ -1 +1,2 @@
from .rt_lamni_ophyd import RtLamniMotor, RtLamniController
from .rt_flomni_ophyd import RtFlomniController, RtFlomniMotor
from .rt_lamni_ophyd import RtLamniController, RtLamniMotor

View File

@ -0,0 +1,749 @@
import functools
import threading
import time
from typing import List
import numpy as np
from bec_lib import MessageEndpoints, bec_logger, messages
from ophyd import Component as Cpt
from ophyd import Device, PositionerBase, Signal
from ophyd.status import wait as status_wait
from ophyd.utils import LimitError, ReadOnlyError
from ophyd_devices.rt_lamni.rt_ophyd import (
BECConfigError,
RtCommunicationError,
RtController,
RtError,
RtReadbackSignal,
RtSetpointSignal,
RtSignalRO,
retry_once,
)
from ophyd_devices.utils.controller import Controller, threadlocked
from ophyd_devices.utils.socket import SocketIO, SocketSignal, raise_if_disconnected
from prettytable import PrettyTable
logger = bec_logger.logger
class RtFlomniController(RtController):
USER_ACCESS = [
"socket_put_and_receive",
"set_rotation_angle",
"feedback_disable",
"feedback_enable_without_reset",
"feedback_enable_with_reset",
"add_pos_to_scan",
"clear_trajectory_generator",
"show_cyclic_error_compensation",
"laser_tracker_on",
"laser_tracker_off",
"laser_tracker_show_all",
]
def __init__(
self,
*,
name=None,
socket_cls=None,
socket_host=None,
socket_port=None,
attr_name="",
parent=None,
labels=None,
kind=None,
):
super().__init__(
name=name,
socket_cls=socket_cls,
socket_host=socket_host,
socket_port=socket_port,
attr_name=attr_name,
parent=parent,
labels=labels,
kind=kind,
)
self.tracker_info = {}
self._min_scan_buffer_reached = False
self.rt_pid_voltage = None
def add_pos_to_scan(self, positions) -> None:
def send_positions(parent, positions):
parent._min_scan_buffer_reached = False
start_time = time.time()
for pos_index, pos in enumerate(positions):
parent.socket_put_and_receive(f"s{pos[0]},{pos[1]},{pos[2]}")
if pos_index > 100:
parent._min_scan_buffer_reached = True
parent._min_scan_buffer_reached = True
logger.info(
f"Sending {len(positions)} positions took {time.time()-start_time} seconds."
)
threading.Thread(target=send_positions, args=(self, positions), daemon=True).start()
def move_to_zero(self):
self.socket_put("pa0,0")
self.get_axis_by_name("rtx").user_setpoint.setpoint = 0
self.socket_put("pa1,0")
self.get_axis_by_name("rty").user_setpoint.setpoint = 0
self.socket_put("pa2,0")
self.get_axis_by_name("rtz").user_setpoint.setpoint = 0
time.sleep(0.05)
def feedback_is_running(self) -> bool:
status = int(float(self.socket_put_and_receive("l2").strip()))
if status == 1:
return False
return True
def feedback_enable_with_reset(self):
self.socket_put("l0") # disable feedback
self.move_to_zero()
if not self.slew_rate_limiters_on_target() or np.abs(self.pid_y()) > 0.1:
logger.info("Please wait, slew rate limiters not on target.")
while not self.slew_rate_limiters_on_target() or np.abs(self.pid_y()) > 0.1:
time.sleep(0.05)
self.get_device_manager().devices.rty.update_user_parameter({"tomo_additional_offsety": 0})
self.clear_trajectory_generator()
self.laser_tracker_on()
# move to 0. FUPR will set the rotation angle during readout
self.get_device_manager().devices.fsamroy.obj.move(0, wait=True)
fsamx = self.get_device_manager().devices.fsamx
fsamx.obj.pid_x_correction = 0
fsamx.obj.controller.socket_put_confirmed("axspeed[4]=0.1*stppermm[4]")
fsamx_in = fsamx.user_parameter.get("in")
if not np.isclose(fsamx.obj.readback.get(), fsamx_in, atol=0.3):
raise RtError(
"Something is wrong. fsamx is very far from the samx_in position. Don't dare correct automatically."
)
if not np.isclose(fsamx.obj.readback.get(), fsamx_in, atol=0.01):
fsamx.enabled_set = True
fsamx.obj.move(fsamx_in, wait=True)
fsamx.enabled_set = False
time.sleep(1)
self.socket_put("l1")
time.sleep(0.4)
if not self.feedback_is_running():
raise RtError("Feedback is not running; likely an error in the interferometer.")
time.sleep(1.5)
self.show_cyclic_error_compensation()
self.rt_pid_voltage = self.get_pid_x()
rtx = self.get_device_manager().devices.rtx
rtx.update_user_parameter({"rt_pid_voltage": self.rt_pid_voltage})
self.set_device_enabled("fsamx", False)
self.set_device_enabled("fsamy", False)
self.set_device_enabled("foptx", False)
self.set_device_enabled("fopty", False)
def move_samx_to_scan_region(self, fovx: float, cenx: float):
if self.rt_pid_voltage is None:
rtx = self.get_device_manager().devices.rtx
self.rt_pid_voltage = rtx.user_parameter.get("rt_pid_voltage")
if self.rt_pid_voltage is None:
raise RtError(
"rt_pid_voltage not set in rtx user parameters. Please run feedback_enable_with_reset first."
)
logger.info(f"Using PID voltage from rtx user parameter: {self.rt_pid_voltage}")
expected_voltage = self.rt_pid_voltage + fovx / 2 * 7 / 100
logger.info(f"Expected PID voltage: {expected_voltage}")
logger.info(f"Current PID voltage: {self.get_pid_x()}")
wait_on_exit = False
while True:
if np.abs(self.get_pid_x() - expected_voltage) < 1:
break
wait_on_exit = True
self.socket_put("v0")
fsamx = self.get_device_manager().devices.fsamx
fsamx.enabled_set = True
fsamx.obj.controller.socket_put_confirmed("axspeed[4]=0.1*stppermm[4]")
fsamx.obj.pid_x_correction -= (self.get_pid_x() - expected_voltage) * 0.01
logger.info(f"Correcting fsamx by {fsamx.obj.pid_x_correction}")
fsamx_in = fsamx.user_parameter.get("in")
fsamx.obj.move(fsamx_in + cenx / 1000 + fsamx.obj.pid_x_correction, wait=True)
fsamx.enabled_set = False
time.sleep(0.1)
self.laser_tracker_on()
time.sleep(0.01)
if wait_on_exit:
time.sleep(1)
self.socket_put("v1")
@threadlocked
def clear_trajectory_generator(self):
self.socket_put("sc")
logger.info("flomni scan stopped and deleted, moving to start position")
def feedback_enable_without_reset(self):
self.laser_tracker_on()
self.socket_put("l3")
time.sleep(0.01)
if not self.feedback_is_running():
raise RtError("Feedback is not running; likely an error in the interferometer.")
self.set_device_enabled("fsamx", False)
self.set_device_enabled("fsamy", False)
self.set_device_enabled("foptx", False)
self.set_device_enabled("fopty", False)
def feedback_disable(self):
self.clear_trajectory_generator()
self.move_to_zero()
self.socket_put("l0")
self.set_device_enabled("fsamx", True)
self.set_device_enabled("fsamy", True)
self.set_device_enabled("foptx", True)
self.set_device_enabled("fopty", True)
fsamx = self.get_device_manager().devices.fsamx
fsamx.obj.controller.socket_put_confirmed("axspeed[4]=025*stppermm[4]")
def get_pid_x(self) -> float:
voltage = float(self.socket_put_and_receive("g").strip())
return voltage
def show_cyclic_error_compensation(self):
cec0 = int(float(self.socket_put_and_receive("w0").strip()))
cec1 = int(float(self.socket_put_and_receive("w0").strip()))
if cec0 == 32:
logger.info("Cyclic Error Compensation: y-axis is initialized")
else:
logger.info("Cyclic Error Compensation: y-axis is NOT initialized")
if cec1 == 32:
logger.info("Cyclic Error Compensation: x-axis is initialized")
else:
logger.info("Cyclic Error Compensation: y-axis is NOT initialized")
def set_rotation_angle(self, val: float) -> None:
self.socket_put(f"a{(-val)/180*np.pi}")
def laser_tracker_on(self):
self.laser_update_tracker_info()
if not self.tracker_info["enabled_z"] or not self.tracker_info["enabled_y"]:
logger.info("Enabling the laser tracker. Please wait...")
tracker_intensity = self.tracker_info["tracker_intensity"]
if (
tracker_intensity < self.tracker_info["threshold_intensity_y"]
or tracker_intensity < self.tracker_info["threshold_intensity_z"]
):
logger.info(self.tracker_info)
raise RtError("The tracker cannot be enabled because the beam intensity it low.")
self.move_to_zero()
self.socket_put("T1")
time.sleep(0.5)
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed(
"trackyct=0"
)
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed(
"trackzct=0"
)
self.laser_tracker_wait_on_target()
logger.info("Laser tracker running!")
def laser_tracker_off(self):
self.socket_put("T0")
def laser_tracker_show_all(self):
self.laser_update_tracker_info()
t = PrettyTable()
t.title = f"Laser Tracker Info"
t.field_names = ["Name", "Value"]
for key, val in self.tracker_info.items():
t.add_row([key, val])
print(t)
def laser_update_tracker_info(self):
ret = self.socket_put_and_receive("Ts")
# remove trailing \n
ret = ret.split("\n")[0]
tracker_values = [float(val) for val in ret.split(",")]
self.tracker_info = {
"tracker_intensity": tracker_values[2],
"threshold_intensity_y": tracker_values[8],
"enabled_y": bool(tracker_values[10]),
"beampos_y": tracker_values[5],
"target_y": tracker_values[6],
"piezo_voltage_y": tracker_values[9],
"threshold_intensity_z": tracker_values[3],
"enabled_z": bool(tracker_values[10]),
"beampos_z": tracker_values[0],
"target_z": tracker_values[1],
"piezo_voltage_z": tracker_values[4],
}
def laser_tracker_galil_enable(self):
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed("tracken=1")
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed("trackyct=0")
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed("trackzct=0")
self.get_device_manager().devices.ftrackz.obj.controller.socket_put_confirmed("XQ#Tracker")
def laser_tracker_on_target(self) -> bool:
self.laser_update_tracker_info()
if np.isclose(
self.tracker_info["beampos_y"], self.tracker_info["target_y"], atol=0.02
) and np.isclose(self.tracker_info["beampos_z"], self.tracker_info["target_z"], atol=0.02):
return True
return False
def laser_tracker_wait_on_target(self):
max_repeat = 25
count = 0
while not self.laser_tracker_on_target():
self.laser_tracker_galil_enable()
logger.info("Waiting for laser tracker to reach target.")
time.sleep(0.5)
count += 1
if count > max_repeat:
raise RtError("Failed to reach laser target position.")
def slew_rate_limiters_on_target(self) -> bool:
ret = int(float(self.socket_put_and_receive("y").strip()))
if ret == 3:
return True
return False
def pid_y(self) -> float:
ret = float(self.socket_put_and_receive("G").strip())
return ret
def read_ssi_interferometer(self, axis_number):
val = float(self.socket_put_and_receive(f"j{axis_number}").strip())
return val
def show_signal_strength_interferometer(self):
t = PrettyTable()
t.title = f"Interferometer signal strength"
t.field_names = ["Axis", "Value"]
for i in range(3):
t.add_row([i, self.read_ssi_interferometer(i)])
print(t)
def _get_signals_from_table(self, return_table) -> dict:
self.average_stdeviations_x_st_fzp += float(return_table[4])
self.average_stdeviations_y_st_fzp += float(return_table[7])
signals = {
"target_x": {"value": float(return_table[2])},
"average_x_st_fzp": {"value": float(return_table[3])},
"stdev_x_st_fzp": {"value": float(return_table[4])},
"target_y": {"value": float(return_table[5])},
"average_y_st_fzp": {"value": float(return_table[6])},
"stdev_y_st_fzp": {"value": float(return_table[7])},
"average_rotz": {"value": float(return_table[8])},
"stdev_rotz": {"value": float(return_table[9])},
"average_stdeviations_x_st_fzp": {
"value": self.average_stdeviations_x_st_fzp / (int(return_table[0]) + 1)
},
"average_stdeviations_y_st_fzp": {
"value": self.average_stdeviations_y_st_fzp / (int(return_table[0]) + 1)
},
}
return signals
@threadlocked
def start_scan(self):
if not self.feedback_is_running():
logger.error(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
raise RtError(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
# here exception
(mode, number_of_positions_planned, current_position_in_scan) = self.get_scan_status()
if number_of_positions_planned == 0:
logger.error("Cannot start scan because no target positions are planned.")
raise RtError("Cannot start scan because no target positions are planned.")
# hier exception
# start a point-by-point scan (for cont scan in flomni it would be "sa")
self.socket_put_and_receive("sd")
@retry_once
@threadlocked
def get_scan_status(self):
return_table = (self.socket_put_and_receive("sr")).split(",")
if len(return_table) != 3:
raise RtCommunicationError(
f"Expected to receive 3 return values. Instead received {return_table}"
)
mode = int(float(return_table[0]))
# mode 0: direct positioning
# mode 1: running internal timer (not tested/used anymore)
# mode 2: rt point scan running
# mode 3: rt point scan starting
# mode 5/6: rt continuous scanning (not available in LamNI)
number_of_positions_planned = int(float(return_table[1]))
current_position_in_scan = int(float(return_table[2]))
return (mode, number_of_positions_planned, current_position_in_scan)
def get_device_manager(self):
for axis in self._axis:
if hasattr(axis, "device_manager") and axis.device_manager:
return axis.device_manager
raise BECConfigError("Could not access the device_manager")
def read_positions_from_sampler(self):
# this was for reading after the scan completed
number_of_samples_to_read = 1 # self.get_scan_status()[1] #number of valid samples, will be updated upon first data read
read_counter = 0
self.average_stdeviations_x_st_fzp = 0
self.average_stdeviations_y_st_fzp = 0
self.average_lamni_angle = 0
mode, number_of_positions_planned, current_position_in_scan = self.get_scan_status()
# if not (mode==2 or mode==3):
# error
self.get_device_manager().producer.set_and_publish(
MessageEndpoints.device_status("rt_scan"),
messages.DeviceStatusMessage(
device="rt_scan", status=1, metadata=self.readout_metadata
).dumps(),
)
# while scan is running
while mode > 0:
# logger.info(f"Current scan position {current_position_in_scan} out of {number_of_positions_planned}")
mode, number_of_positions_planned, current_position_in_scan = self.get_scan_status()
time.sleep(0.01)
if current_position_in_scan > 5:
while current_position_in_scan > read_counter + 1:
return_table = (self.socket_put_and_receive(f"r{read_counter}")).split(",")
# logger.info(f"{return_table}")
logger.info(f"Read {read_counter} out of {number_of_positions_planned}")
read_counter = read_counter + 1
signals = self._get_signals_from_table(return_table)
self.publish_device_data(signals=signals, pointID=int(return_table[0]))
time.sleep(0.05)
# read the last samples even though scan is finished already
while number_of_positions_planned > read_counter:
return_table = (self.socket_put_and_receive(f"r{read_counter}")).split(",")
logger.info(f"Read {read_counter} out of {number_of_positions_planned}")
# logger.info(f"{return_table}")
read_counter = read_counter + 1
signals = self._get_signals_from_table(return_table)
self.publish_device_data(signals=signals, pointID=int(return_table[0]))
self.get_device_manager().producer.set_and_publish(
MessageEndpoints.device_status("rt_scan"),
messages.DeviceStatusMessage(
device="rt_scan", status=0, metadata=self.readout_metadata
).dumps(),
)
logger.info(
f"Flomni statistics: Average of all standard deviations: x {self.average_stdeviations_x_st_fzp/number_of_samples_to_read}, y {self.average_stdeviations_y_st_fzp/number_of_samples_to_read}."
)
def publish_device_data(self, signals, pointID):
self.get_device_manager().producer.send(
MessageEndpoints.device_read("rt_flomni"),
messages.DeviceMessage(
signals=signals,
metadata={"pointID": pointID, **self.readout_metadata},
).dumps(),
)
def start_readout(self):
readout = threading.Thread(target=self.read_positions_from_sampler)
readout.start()
def kickoff(self, metadata):
self.readout_metadata = metadata
while not self._min_scan_buffer_reached:
time.sleep(0.001)
self.start_scan()
time.sleep(0.1)
self.start_readout()
class RtFlomniReadbackSignal(RtReadbackSignal):
@retry_once
@threadlocked
def _socket_get(self) -> float:
"""Get command for the readback signal
Returns:
float: Readback value after adjusting for sign and motor resolution.
"""
time.sleep(0.1)
return_table = (self.controller.socket_put_and_receive(f"pr")).split(",")
current_pos = float(return_table[self.parent.axis_Id_numeric])
current_pos *= self.parent.sign
self.parent.user_setpoint.setpoint = current_pos
return current_pos
class RtFlomniSetpointSignal(RtSetpointSignal):
setpoint = 0
@retry_once
@threadlocked
def _socket_set(self, val: float) -> None:
"""Set a new target value / setpoint value. Before submission, the target value is adjusted for the axis' sign.
Furthermore, it is ensured that all axes are referenced before a new setpoint is submitted.
Args:
val (float): Target value / setpoint value
Raises:
RtError: Raised if interferometer feedback is disabled.
"""
if not self.parent.controller.feedback_is_running():
raise RtError(
"The interferometer feedback is not running. Either it is turned off or and interferometer error occured."
)
self.set_with_feedback_disabled(val)
def set_with_feedback_disabled(self, val):
target_val = val * self.parent.sign
self.setpoint = target_val
self.controller.socket_put(f"pa{self.parent.axis_Id_numeric},{target_val:.4f}")
class RtFlomniFeedbackRunning(RtSignalRO):
@threadlocked
def _socket_get(self):
return int(self.parent.controller.feedback_is_running())
class RtFlomniMotor(Device, PositionerBase):
USER_ACCESS = ["controller"]
readback = Cpt(
RtFlomniReadbackSignal,
signal_name="readback",
kind="hinted",
)
user_setpoint = Cpt(RtFlomniSetpointSignal, signal_name="setpoint")
high_limit_travel = Cpt(Signal, value=0, kind="omitted")
low_limit_travel = Cpt(Signal, value=0, kind="omitted")
SUB_READBACK = "readback"
SUB_CONNECTION_CHANGE = "connection_change"
_default_sub = SUB_READBACK
def __init__(
self,
axis_Id,
prefix="",
*,
name,
kind=None,
read_attrs=None,
configuration_attrs=None,
parent=None,
host="mpc2844.psi.ch",
port=2222,
sign=1,
socket_cls=SocketIO,
device_manager=None,
limits=None,
**kwargs,
):
self.axis_Id = axis_Id
self.sign = sign
self.controller = RtFlomniController(
socket_cls=socket_cls, socket_host=host, socket_port=port
)
self.controller.set_axis(axis=self, axis_nr=self.axis_Id_numeric)
self.device_manager = device_manager
self.tolerance = kwargs.pop("tolerance", 0.5)
super().__init__(
prefix,
name=name,
kind=kind,
read_attrs=read_attrs,
configuration_attrs=configuration_attrs,
parent=parent,
**kwargs,
)
self.readback.name = self.name
self.controller.subscribe(
self._update_connection_state, event_type=self.SUB_CONNECTION_CHANGE
)
self._update_connection_state()
# self.readback.subscribe(self._forward_readback, event_type=self.readback.SUB_VALUE)
if limits is not None:
assert len(limits) == 2
self.low_limit_travel.put(limits[0])
self.high_limit_travel.put(limits[1])
@property
def limits(self):
return (self.low_limit_travel.get(), self.high_limit_travel.get())
@property
def low_limit(self):
return self.limits[0]
@property
def high_limit(self):
return self.limits[1]
def check_value(self, pos):
"""Check that the position is within the soft limits"""
low_limit, high_limit = self.limits
if low_limit < high_limit and not (low_limit <= pos <= high_limit):
raise LimitError(f"position={pos} not within limits {self.limits}")
def _update_connection_state(self, **kwargs):
for walk in self.walk_signals():
walk.item._metadata["connected"] = self.controller.connected
def _forward_readback(self, **kwargs):
kwargs.pop("sub_type")
self._run_subs(sub_type="readback", **kwargs)
@raise_if_disconnected
def move(self, position, wait=True, **kwargs):
"""Move to a specified position, optionally waiting for motion to
complete.
Parameters
----------
position
Position to move to
moved_cb : callable
Call this callback when movement has finished. This callback must
accept one keyword argument: 'obj' which will be set to this
positioner instance.
timeout : float, optional
Maximum time to wait for the motion. If None, the default timeout
for this positioner is used.
Returns
-------
status : MoveStatus
Raises
------
TimeoutError
When motion takes longer than `timeout`
ValueError
On invalid positions
RuntimeError
If motion fails other than timing out
"""
self._started_moving = False
timeout = kwargs.pop("timeout", 100)
status = super().move(position, timeout=timeout, **kwargs)
self.user_setpoint.put(position, wait=False)
def move_and_finish():
while not self.controller.slew_rate_limiters_on_target():
print("motor is moving")
val = self.readback.read()
self._run_subs(
sub_type=self.SUB_READBACK,
value=val,
timestamp=time.time(),
)
time.sleep(0.01)
print("Move finished")
self._done_moving()
threading.Thread(target=move_and_finish, daemon=True).start()
try:
if wait:
status_wait(status)
except KeyboardInterrupt:
self.stop()
raise
return status
@property
def axis_Id(self):
return self._axis_Id_alpha
@axis_Id.setter
def axis_Id(self, val):
if isinstance(val, str):
if len(val) != 1:
raise ValueError(f"Only single-character axis_Ids are supported.")
self._axis_Id_alpha = val
self._axis_Id_numeric = ord(val.lower()) - 97
else:
raise TypeError(f"Expected value of type str but received {type(val)}")
@property
def axis_Id_numeric(self):
return self._axis_Id_numeric
@axis_Id_numeric.setter
def axis_Id_numeric(self, val):
if isinstance(val, int):
if val > 26:
raise ValueError(f"Numeric value exceeds supported range.")
self._axis_Id_alpha = val
self._axis_Id_numeric = (chr(val + 97)).capitalize()
else:
raise TypeError(f"Expected value of type int but received {type(val)}")
def kickoff(self, metadata, **kwargs) -> None:
self.controller.kickoff(metadata)
@property
def egu(self):
"""The engineering units (EGU) for positions"""
return "um"
# how is this used later?
def stage(self) -> List[object]:
return super().stage()
def unstage(self) -> List[object]:
return super().unstage()
def stop(self, *, success=False):
self.controller.stop_all_axes()
return super().stop(success=success)
if __name__ == "__main__":
rtcontroller = RtFlomniController(
socket_cls=SocketIO, socket_host="mpc2844.psi.ch", socket_port=2222
)
rtcontroller.on()
rtcontroller.laser_tracker_on()

View File

@ -0,0 +1,831 @@
import functools
import threading
import time
from typing import List
import numpy as np
from bec_lib import MessageEndpoints, bec_logger, messages
from ophyd import Component as Cpt
from ophyd import Device, PositionerBase, Signal
from ophyd.status import wait as status_wait
from ophyd.utils import LimitError, ReadOnlyError
from ophyd_devices.utils.controller import Controller, threadlocked
from ophyd_devices.utils.socket import SocketIO, SocketSignal, raise_if_disconnected
logger = bec_logger.logger
class RtCommunicationError(Exception):
pass
class RtError(Exception):
pass
class BECConfigError(Exception):
pass
def retry_once(fcn):
"""Decorator to rerun a function in case a CommunicationError was raised. This may happen if the buffer was not empty."""
@functools.wraps(fcn)
def wrapper(self, *args, **kwargs):
try:
val = fcn(self, *args, **kwargs)
except (RtCommunicationError, RtError):
val = fcn(self, *args, **kwargs)
return val
return wrapper
class RtController(Controller):
_axes_per_controller = 3
USER_ACCESS = [
"socket_put_and_receive",
"set_rotation_angle",
"feedback_disable",
"feedback_enable_without_reset",
"feedback_disable_and_even_reset_lamni_angle_interferometer",
"feedback_enable_with_reset",
"add_pos_to_scan",
"clear_trajectory_generator",
"_set_axis_velocity",
"_set_axis_velocity_maximum_speed",
"_position_sampling_single_read",
"_position_sampling_single_reset_and_start_sampling",
]
def on(self, controller_num=0) -> None:
"""Open a new socket connection to the controller"""
# if not self.connected:
# try:
# self.sock.open()
# # discuss - after disconnect takes a while for the server to be ready again
# max_retries = 10
# tries = 0
# while not self.connected:
# try:
# welcome_message = self.sock.receive()
# self.connected = True
# except ConnectionResetError as conn_reset:
# if tries > max_retries:
# raise conn_reset
# tries += 1
# time.sleep(2)
# except ConnectionRefusedError as conn_error:
# logger.error("Failed to open a connection to RTLamNI.")
# raise RtCommunicationError from conn_error
# else:
# logger.info("The connection has already been established.")
# # warnings.warn(f"The connection has already been established.", stacklevel=2)
super().on()
# self._update_flyer_device_info()
def set_axis(self, axis: Device, axis_nr: int) -> None:
"""Assign an axis to a device instance.
Args:
axis (Device): Device instance (e.g. GalilMotor)
axis_nr (int): Controller axis number
"""
self._axis[axis_nr] = axis
@threadlocked
def socket_put(self, val: str) -> None:
self.sock.put(f"{val}\n".encode())
@threadlocked
def socket_get(self) -> str:
return self.sock.receive().decode()
@retry_once
@threadlocked
def socket_put_and_receive(self, val: str, remove_trailing_chars=True) -> str:
self.socket_put(val)
if remove_trailing_chars:
return self._remove_trailing_characters(self.sock.receive().decode())
return self.socket_get()
def is_axis_moving(self, axis_Id) -> bool:
# this checks that axis is on target
axis_is_on_target = bool(float(self.socket_put_and_receive(f"o")))
return not axis_is_on_target
# def is_thread_active(self, thread_id: int) -> bool:
# val = float(self.socket_put_and_receive(f"MG_XQ{thread_id}"))
# if val == -1:
# return False
# return True
def _remove_trailing_characters(self, var) -> str:
if len(var) > 1:
return var.split("\r\n")[0]
return var
@threadlocked
def set_rotation_angle(self, val: float):
self.socket_put(f"a{(val-300+30.538)/180*np.pi}")
@threadlocked
def stop_all_axes(self):
self.socket_put("sc")
@threadlocked
def feedback_disable(self):
self.socket_put("J0")
logger.info("LamNI Feedback disabled.")
self.set_device_enabled("lsamx", True)
self.set_device_enabled("lsamy", True)
self.set_device_enabled("loptx", True)
self.set_device_enabled("lopty", True)
self.set_device_enabled("loptz", True)
@threadlocked
def _set_axis_velocity(self, um_per_s):
self.socket_put(f"V{um_per_s}")
@threadlocked
def _set_axis_velocity_maximum_speed(self):
self.socket_put(f"V0")
# for developement of soft continuous scanning
@threadlocked
def _position_sampling_single_reset_and_start_sampling(self):
self.socket_put(f"Ss")
@threadlocked
def _position_sampling_single_read(self):
(number_of_samples, sum0, sum0_2, sum1, sum1_2, sum2, sum2_2) = self.socket_put_and_receive(
f"Sr"
).split(",")
avg_x = float(sum1) / int(number_of_samples)
avg_y = float(sum0) / int(number_of_samples)
stdev_x = np.sqrt(
float(sum1_2) / int(number_of_samples)
- np.power(float(sum1) / int(number_of_samples), 2)
)
stdev_y = np.sqrt(
float(sum0_2) / int(number_of_samples)
- np.power(float(sum0) / int(number_of_samples), 2)
)
return (avg_x, avg_y, stdev_x, stdev_y)
@threadlocked
def feedback_enable_without_reset(self):
# read current interferometer position
return_table = (self.socket_put_and_receive(f"J4")).split(",")
x_curr = float(return_table[2])
y_curr = float(return_table[1])
# set these as closed loop target position
self.socket_put(f"pa0,{x_curr:.4f}")
self.socket_put(f"pa1,{y_curr:.4f}")
self.get_device_manager().devices.rtx.obj.user_setpoint.set_with_feedback_disabled(x_curr)
self.get_device_manager().devices.rty.obj.user_setpoint.set_with_feedback_disabled(y_curr)
self.socket_put("J5")
logger.info("LamNI Feedback enabled (without reset).")
self.set_device_enabled("lsamx", False)
self.set_device_enabled("lsamy", False)
self.set_device_enabled("loptx", False)
self.set_device_enabled("lopty", False)
self.set_device_enabled("loptz", False)
@threadlocked
def feedback_disable_and_even_reset_lamni_angle_interferometer(self):
self.socket_put("J6")
logger.info("LamNI Feedback disabled including the angular interferometer.")
self.set_device_enabled("lsamx", True)
self.set_device_enabled("lsamy", True)
self.set_device_enabled("loptx", True)
self.set_device_enabled("lopty", True)
self.set_device_enabled("loptz", True)
def get_device_manager(self):
for axis in self._axis:
if hasattr(axis, "device_manager") and axis.device_manager:
return axis.device_manager
raise BECConfigError("Could not access the device_manager")
def get_axis_by_name(self, name):
for axis in self._axis:
if axis:
if axis.name == name:
return axis
raise RuntimeError(f"Could not find an axis with name {name}")
@threadlocked
def clear_trajectory_generator(self):
self.socket_put("sc")
logger.info("LamNI scan stopped and deleted, moving to start position")
def add_pos_to_scan(self, positions) -> None:
def send_positions(parent, positions):
parent._min_scan_buffer_reached = False
for pos_index, pos in enumerate(positions):
parent.socket_put_and_receive(f"s{pos[0]},{pos[1]},0")
if pos_index > 100:
parent._min_scan_buffer_reached = True
parent._min_scan_buffer_reached = True
threading.Thread(target=send_positions, args=(self, positions), daemon=True).start()
@retry_once
@threadlocked
def get_scan_status(self):
return_table = (self.socket_put_and_receive(f"sr")).split(",")
if len(return_table) != 3:
raise RtCommunicationError(
f"Expected to receive 3 return values. Instead received {return_table}"
)
mode = int(return_table[0])
# mode 0: direct positioning
# mode 1: running internal timer (not tested/used anymore)
# mode 2: rt point scan running
# mode 3: rt point scan starting
# mode 5/6: rt continuous scanning (not available in LamNI)
number_of_positions_planned = int(return_table[1])
current_position_in_scan = int(return_table[2])
return (mode, number_of_positions_planned, current_position_in_scan)
@threadlocked
def start_scan(self):
interferometer_feedback_not_running = int((self.socket_put_and_receive("J2")).split(",")[0])
if interferometer_feedback_not_running == 1:
logger.error(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
raise RtError(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
# here exception
(mode, number_of_positions_planned, current_position_in_scan) = self.get_scan_status()
if number_of_positions_planned == 0:
logger.error("Cannot start scan because no target positions are planned.")
raise RtError("Cannot start scan because no target positions are planned.")
# hier exception
# start a point-by-point scan (for cont scan in flomni it would be "sa")
self.socket_put_and_receive("sd")
def start_readout(self):
readout = threading.Thread(target=self.read_positions_from_sampler)
readout.start()
def _update_flyer_device_info(self):
flyer_info = self._get_flyer_device_info()
self.get_device_manager().producer.set(
MessageEndpoints.device_info("rt_scan"),
messages.DeviceInfoMessage(device="rt_scan", info=flyer_info).dumps(),
)
def _get_flyer_device_info(self) -> dict:
return {
"device_name": self.name,
"device_attr_name": getattr(self, "attr_name", ""),
"device_dotted_name": getattr(self, "dotted_name", ""),
"device_info": {
"device_base_class": "ophydobject",
"signals": [],
"hints": {"fields": ["average_x_st_fzp", "average_y_st_fzp"]},
"describe": {},
"describe_configuration": {},
"sub_devices": [],
"custom_user_access": [],
},
}
def kickoff(self, metadata):
self.readout_metadata = metadata
while not self._min_scan_buffer_reached:
time.sleep(0.001)
self.start_scan()
time.sleep(0.1)
self.start_readout()
def _get_signals_from_table(self, return_table) -> dict:
self.average_stdeviations_x_st_fzp += float(return_table[5])
self.average_stdeviations_y_st_fzp += float(return_table[8])
self.average_lamni_angle += float(return_table[19])
signals = {
"target_x": {"value": float(return_table[3])},
"average_x_st_fzp": {"value": float(return_table[4])},
"stdev_x_st_fzp": {"value": float(return_table[5])},
"target_y": {"value": float(return_table[6])},
"average_y_st_fzp": {"value": float(return_table[7])},
"stdev_y_st_fzp": {"value": float(return_table[8])},
"average_cap1": {"value": float(return_table[9])},
"stdev_cap1": {"value": float(return_table[10])},
"average_cap2": {"value": float(return_table[11])},
"stdev_cap2": {"value": float(return_table[12])},
"average_cap3": {"value": float(return_table[13])},
"stdev_cap3": {"value": float(return_table[14])},
"average_cap4": {"value": float(return_table[15])},
"stdev_cap4": {"value": float(return_table[16])},
"average_cap5": {"value": float(return_table[17])},
"stdev_cap5": {"value": float(return_table[18])},
"average_angle_interf_ST": {"value": float(return_table[19])},
"stdev_angle_interf_ST": {"value": float(return_table[20])},
"average_stdeviations_x_st_fzp": {
"value": self.average_stdeviations_x_st_fzp / (int(return_table[0]) + 1)
},
"average_stdeviations_y_st_fzp": {
"value": self.average_stdeviations_y_st_fzp / (int(return_table[0]) + 1)
},
"average_lamni_angle": {"value": self.average_lamni_angle / (int(return_table[0]) + 1)},
}
return signals
def read_positions_from_sampler(self):
# this was for reading after the scan completed
number_of_samples_to_read = 1 # self.get_scan_status()[1] #number of valid samples, will be updated upon first data read
read_counter = 0
previous_point_in_scan = 0
self.average_stdeviations_x_st_fzp = 0
self.average_stdeviations_y_st_fzp = 0
self.average_lamni_angle = 0
mode, number_of_positions_planned, current_position_in_scan = self.get_scan_status()
# if not (mode==2 or mode==3):
# error
self.get_device_manager().producer.set_and_publish(
MessageEndpoints.device_status("rt_scan"),
messages.DeviceStatusMessage(
device="rt_scan", status=1, metadata=self.readout_metadata
).dumps(),
)
# while scan is running
while mode > 0:
# logger.info(f"Current scan position {current_position_in_scan} out of {number_of_positions_planned}")
mode, number_of_positions_planned, current_position_in_scan = self.get_scan_status()
time.sleep(0.01)
if current_position_in_scan > 5:
while current_position_in_scan > read_counter + 1:
return_table = (self.socket_put_and_receive(f"r{read_counter}")).split(",")
# logger.info(f"{return_table}")
logger.info(f"Read {read_counter} out of {number_of_positions_planned}")
read_counter = read_counter + 1
signals = self._get_signals_from_table(return_table)
self.publish_device_data(signals=signals, pointID=int(return_table[0]))
time.sleep(0.05)
# read the last samples even though scan is finished already
while number_of_positions_planned > read_counter:
return_table = (self.socket_put_and_receive(f"r{read_counter}")).split(",")
logger.info(f"Read {read_counter} out of {number_of_positions_planned}")
# logger.info(f"{return_table}")
read_counter = read_counter + 1
signals = self._get_signals_from_table(return_table)
self.publish_device_data(signals=signals, pointID=int(return_table[0]))
self.get_device_manager().producer.set_and_publish(
MessageEndpoints.device_status("rt_scan"),
messages.DeviceStatusMessage(
device="rt_scan", status=0, metadata=self.readout_metadata
).dumps(),
)
logger.info(
f"LamNI statistics: Average of all standard deviations: x {self.average_stdeviations_x_st_fzp/number_of_samples_to_read}, y {self.average_stdeviations_y_st_fzp/number_of_samples_to_read}, angle {self.average_lamni_angle/number_of_samples_to_read}."
)
def publish_device_data(self, signals, pointID):
self.get_device_manager().producer.send(
MessageEndpoints.device_read("rt_lamni"),
messages.DeviceMessage(
signals=signals,
metadata={"pointID": pointID, **self.readout_metadata},
).dumps(),
)
def feedback_status_angle_lamni(self) -> bool:
return_table = (self.socket_put_and_receive(f"J7")).split(",")
logger.debug(
f"LamNI angle interferomter status {bool(return_table[0])}, position {float(return_table[1])}, signal {float(return_table[2])}"
)
return bool(return_table[0])
def feedback_enable_with_reset(self):
if not self.feedback_status_angle_lamni():
self.feedback_disable_and_even_reset_lamni_angle_interferometer()
logger.info(f"LamNI resetting interferometer inclusive angular interferomter.")
else:
self.feedback_disable()
logger.info(
f"LamNI resetting interferomter except angular interferometer which is already running."
)
# set these as closed loop target position
self.socket_put(f"pa0,0")
self.get_axis_by_name("rtx").user_setpoint.setpoint = 0
self.socket_put(f"pa1,0")
self.get_axis_by_name("rty").user_setpoint.setpoint = 0
self.socket_put(
f"pa2,0"
) # we set all three outputs of the traj. gen. although in LamNI case only 0,1 are used
self.clear_trajectory_generator()
self.get_device_manager().devices.lsamrot.obj.move(0, wait=True)
galil_controller_rt_status = (
self.get_device_manager().devices.lsamx.obj.controller.lgalil_is_air_off_and_orchestra_enabled()
)
if galil_controller_rt_status == 0:
logger.error(
"Cannot enable feedback. The small rotation air is on and/or orchestra disabled by the motor controller."
)
raise RtError(
"Cannot enable feedback. The small rotation air is on and/or orchestra disabled by the motor controller."
)
time.sleep(0.03)
lsamx_user_params = self.get_device_manager().devices.lsamx.user_parameter
if lsamx_user_params is None or lsamx_user_params.get("center") is None:
raise RuntimeError("lsamx center is not defined")
lsamy_user_params = self.get_device_manager().devices.lsamy.user_parameter
if lsamy_user_params is None or lsamy_user_params.get("center") is None:
raise RuntimeError("lsamy center is not defined")
lsamx_center = lsamx_user_params.get("center")
lsamy_center = lsamy_user_params.get("center")
self.get_device_manager().devices.lsamx.obj.move(lsamx_center, wait=True)
self.get_device_manager().devices.lsamy.obj.move(lsamy_center, wait=True)
self.socket_put("J1")
_waitforfeedbackctr = 0
interferometer_feedback_not_running = int((self.socket_put_and_receive("J2")).split(",")[0])
while interferometer_feedback_not_running == 1 and _waitforfeedbackctr < 100:
time.sleep(0.01)
_waitforfeedbackctr = _waitforfeedbackctr + 1
interferometer_feedback_not_running = int(
(self.socket_put_and_receive("J2")).split(",")[0]
)
self.set_device_enabled("lsamx", False)
self.set_device_enabled("lsamy", False)
self.set_device_enabled("loptx", False)
self.set_device_enabled("lopty", False)
self.set_device_enabled("loptz", False)
if interferometer_feedback_not_running == 1:
logger.error(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
raise RtError(
"Cannot start scan because feedback loop is not running or there is an interferometer error."
)
time.sleep(0.01)
# ptychography_alignment_done = 0
def set_device_enabled(self, device_name: str, enabled: bool) -> None:
"""enable / disable a device"""
if device_name not in self.get_device_manager().devices:
logger.warning(
f"Device {device_name} is not configured and cannot be enabled/disabled."
)
return
self.get_device_manager().devices[device_name].enabled_set = enabled
class RtSignalBase(SocketSignal):
def __init__(self, signal_name, **kwargs):
self.signal_name = signal_name
super().__init__(**kwargs)
self.controller = self.parent.controller
self.sock = self.parent.controller.sock
class RtSignalRO(RtSignalBase):
def __init__(self, signal_name, **kwargs):
super().__init__(signal_name, **kwargs)
self._metadata["write_access"] = False
def _socket_set(self, val):
raise ReadOnlyError("Read-only signals cannot be set")
class RtReadbackSignal(RtSignalRO):
@retry_once
@threadlocked
def _socket_get(self) -> float:
"""Get command for the readback signal
Returns:
float: Readback value after adjusting for sign and motor resolution.
"""
return_table = (self.controller.socket_put_and_receive(f"J4")).split(",")
print(return_table)
if self.parent.axis_Id_numeric == 0:
readback_index = 2
elif self.parent.axis_Id_numeric == 1:
readback_index = 1
else:
raise RtError("Currently, only two axes are supported.")
current_pos = float(return_table[readback_index])
current_pos *= self.parent.sign
return current_pos
class RtSetpointSignal(RtSignalBase):
setpoint = 0
def _socket_get(self) -> float:
"""Get command for receiving the setpoint / target value.
The value is not pulled from the controller but instead just the last setpoint used.
Returns:
float: setpoint / target value
"""
return self.setpoint
@retry_once
@threadlocked
def _socket_set(self, val: float) -> None:
"""Set a new target value / setpoint value. Before submission, the target value is adjusted for the axis' sign.
Furthermore, it is ensured that all axes are referenced before a new setpoint is submitted.
Args:
val (float): Target value / setpoint value
Raises:
RtError: Raised if interferometer feedback is disabled.
"""
interferometer_feedback_not_running = int(
(self.controller.socket_put_and_receive("J2")).split(",")[0]
)
if interferometer_feedback_not_running != 0:
raise RtError(
"The interferometer feedback is not running. Either it is turned off or and interferometer error occured."
)
self.set_with_feedback_disabled(val)
def set_with_feedback_disabled(self, val):
target_val = val * self.parent.sign
self.setpoint = target_val
self.controller.socket_put(f"pa{self.parent.axis_Id_numeric},{target_val:.4f}")
class RtMotorIsMoving(RtSignalRO):
def _socket_get(self):
return self.controller.is_axis_moving(self.parent.axis_Id_numeric)
def get(self):
val = super().get()
if val is not None:
self._run_subs(
sub_type=self.SUB_VALUE,
value=val,
timestamp=time.time(),
)
return val
class RtFeedbackRunning(RtSignalRO):
@threadlocked
def _socket_get(self):
if int((self.controller.socket_put_and_receive("J2")).split(",")[0]) == 0:
return 1
else:
return 0
class RtMotor(Device, PositionerBase):
USER_ACCESS = ["controller"]
readback = Cpt(
RtReadbackSignal,
signal_name="readback",
kind="hinted",
)
user_setpoint = Cpt(RtSetpointSignal, signal_name="setpoint")
motor_is_moving = Cpt(RtMotorIsMoving, signal_name="motor_is_moving", kind="normal")
high_limit_travel = Cpt(Signal, value=0, kind="omitted")
low_limit_travel = Cpt(Signal, value=0, kind="omitted")
SUB_READBACK = "readback"
SUB_CONNECTION_CHANGE = "connection_change"
_default_sub = SUB_READBACK
def __init__(
self,
axis_Id,
prefix="",
*,
name,
kind=None,
read_attrs=None,
configuration_attrs=None,
parent=None,
host="mpc2680.psi.ch",
port=3333,
sign=1,
socket_cls=SocketIO,
device_manager=None,
limits=None,
**kwargs,
):
self.axis_Id = axis_Id
self.sign = sign
self.controller = RtController(socket=socket_cls(host=host, port=port))
self.controller.set_axis(axis=self, axis_nr=self.axis_Id_numeric)
self.device_manager = device_manager
self.tolerance = kwargs.pop("tolerance", 0.5)
super().__init__(
prefix,
name=name,
kind=kind,
read_attrs=read_attrs,
configuration_attrs=configuration_attrs,
parent=parent,
**kwargs,
)
self.readback.name = self.name
self.controller.subscribe(
self._update_connection_state, event_type=self.SUB_CONNECTION_CHANGE
)
self._update_connection_state()
# self.readback.subscribe(self._forward_readback, event_type=self.readback.SUB_VALUE)
if limits is not None:
assert len(limits) == 2
self.low_limit_travel.put(limits[0])
self.high_limit_travel.put(limits[1])
@property
def limits(self):
return (self.low_limit_travel.get(), self.high_limit_travel.get())
@property
def low_limit(self):
return self.limits[0]
@property
def high_limit(self):
return self.limits[1]
def check_value(self, pos):
"""Check that the position is within the soft limits"""
low_limit, high_limit = self.limits
if low_limit < high_limit and not (low_limit <= pos <= high_limit):
raise LimitError(f"position={pos} not within limits {self.limits}")
def _update_connection_state(self, **kwargs):
for walk in self.walk_signals():
walk.item._metadata["connected"] = self.controller.connected
def _forward_readback(self, **kwargs):
kwargs.pop("sub_type")
self._run_subs(sub_type="readback", **kwargs)
@raise_if_disconnected
def move(self, position, wait=True, **kwargs):
"""Move to a specified position, optionally waiting for motion to
complete.
Parameters
----------
position
Position to move to
moved_cb : callable
Call this callback when movement has finished. This callback must
accept one keyword argument: 'obj' which will be set to this
positioner instance.
timeout : float, optional
Maximum time to wait for the motion. If None, the default timeout
for this positioner is used.
Returns
-------
status : MoveStatus
Raises
------
TimeoutError
When motion takes longer than `timeout`
ValueError
On invalid positions
RuntimeError
If motion fails other than timing out
"""
self._started_moving = False
timeout = kwargs.pop("timeout", 100)
status = super().move(position, timeout=timeout, **kwargs)
self.user_setpoint.put(position, wait=False)
def move_and_finish():
while self.motor_is_moving.get():
print("motor is moving")
val = self.readback.read()
self._run_subs(
sub_type=self.SUB_READBACK,
value=val,
timestamp=time.time(),
)
time.sleep(0.01)
print("Move finished")
self._done_moving()
threading.Thread(target=move_and_finish, daemon=True).start()
try:
if wait:
status_wait(status)
except KeyboardInterrupt:
self.stop()
raise
return status
@property
def axis_Id(self):
return self._axis_Id_alpha
@axis_Id.setter
def axis_Id(self, val):
if isinstance(val, str):
if len(val) != 1:
raise ValueError(f"Only single-character axis_Ids are supported.")
self._axis_Id_alpha = val
self._axis_Id_numeric = ord(val.lower()) - 97
else:
raise TypeError(f"Expected value of type str but received {type(val)}")
@property
def axis_Id_numeric(self):
return self._axis_Id_numeric
@axis_Id_numeric.setter
def axis_Id_numeric(self, val):
if isinstance(val, int):
if val > 26:
raise ValueError(f"Numeric value exceeds supported range.")
self._axis_Id_alpha = val
self._axis_Id_numeric = (chr(val + 97)).capitalize()
else:
raise TypeError(f"Expected value of type int but received {type(val)}")
def kickoff(self, metadata, **kwargs) -> None:
self.controller.kickoff(metadata)
@property
def egu(self):
"""The engineering units (EGU) for positions"""
return "um"
# how is this used later?
def stage(self) -> List[object]:
return super().stage()
def unstage(self) -> List[object]:
return super().unstage()
def stop(self, *, success=False):
self.controller.stop_all_axes()
return super().stop(success=success)
if __name__ == "__main__":
logging.basicConfig(level=logging.DEBUG)
mock = False
if not mock:
rty = RtLamniMotor("B", name="rty", host="mpc2680.psi.ch", port=3333, sign=1)
rty.stage()
status = rty.move(0, wait=True)
status = rty.move(10, wait=True)
rty.read()
rty.get()
rty.describe()
rty.unstage()
else:
from ophyd_devices.utils.socket import SocketMock
rtx = RtLamniMotor("A", name="rtx", host="mpc2680.psi.ch", port=3333, socket_cls=SocketMock)
rty = RtLamniMotor("B", name="rty", host="mpc2680.psi.ch", port=3333, socket_cls=SocketMock)
rtx.stage()
# rty.stage()

View File

@ -3,8 +3,10 @@ import functools
import json
import logging
import os
import time
import numpy as np
from prettytable import PrettyTable
from typeguard import typechecked
from ophyd_devices.smaract.smaract_errors import (
@ -73,7 +75,13 @@ class SmaractSensors:
class SmaractController(Controller):
_axes_per_controller = 6
_initialized = False
USER_ACCESS = ["socket_put_and_receive", "smaract_show_all", "move_open_loop_steps"]
USER_ACCESS = [
"socket_put_and_receive",
"smaract_show_all",
"move_open_loop_steps",
"find_reference_mark",
"describe",
]
def __init__(
self,
@ -117,7 +125,19 @@ class SmaractController(Controller):
raise_if_not_status=False,
) -> str:
self.socket_put(val)
return_val = self.socket_get()
return_val = ""
max_wait_time = 1
elapsed_time = 0
sleep_time = 0.01
while True:
ret = self.socket_get()
return_val += ret
if ret.endswith("\n"):
break
time.sleep(sleep_time)
elapsed_time += sleep_time
if elapsed_time > max_wait_time:
break
if remove_trailing_chars:
return_val = self._remove_trailing_characters(return_val)
logger.debug(f"Sending {val}; Returned {return_val}")
@ -234,15 +254,15 @@ class SmaractController(Controller):
@axis_checked
@typechecked
def move_open_loop_steps(
self, axis_Id_numeric: int, steps: int, amplitude: int = 2000, frequency: int = 500
self, axis_Id_numeric: int, steps: int, amplitude: int = 4000, frequency: int = 2000
) -> None:
"""Move open loop steps
"""Move open loop steps. It performs a burst of steps with the given parameters.
Args:
axis_Id_numeric (int): Axis number.
steps (float): Relative position to move to in mm.
hold_time (int, optional): Specifies how long (in milliseconds) the position is actively held after reaching the target. The valid range is 0..60,000. A 0 deactivates this feature, a value of 60,000 is infinite (until manually stopped, see S command). Defaults to 1000.
steps (int): Number and direction of steps to perform. The valid range is -30,000..30,000. A value of 0 stops the positioner, but see S command. A value of 30,000 or -30,000 performs an unbounded move. This should be used with caution since the positioner will only stop on an S command.
amplitude (int): Amplitude that the steps are performed with. Lower amplitude values result in a smaller step width. The parameter must be given as a 12bit value (range 0..4,095). 0 corresponds to 0V, 4,095 to 100V. Default: 4000
frequency (int): Frequency in Hz that the steps are performed with. The valid range is 1..18,500. Default: 2000.
"""
self.socket_put_and_receive(
f"MST{axis_Id_numeric},{steps},{amplitude},{frequency}",
@ -374,6 +394,15 @@ class SmaractController(Controller):
if self._message_starts_with(return_val, f":ST{axis_Id_numeric}"):
return self._sensors.avail_sensors.get(int(return_val.strip(f":ST{axis_Id_numeric},")))
@retry_once
@axis_checked
def find_reference_mark(
self, axis_Id_numeric: int, direction: int, holdTime: int, autoZero: int
) -> None:
return_val = self.socket_put_and_receive(
f"FRM{axis_Id_numeric},{direction},{holdTime},{autoZero}"
)
@retry_once
@axis_checked
def set_closed_loop_move_speed(self, axis_Id_numeric: int, move_speed: float) -> None:
@ -419,7 +448,7 @@ class SmaractController(Controller):
"Closed Loop Speed",
"Position",
]
for ax in range(self._Smaract_axis_per_controller):
for ax in range(self._axes_per_controller):
axis = self._axis[ax]
if axis is not None:
t.add_row(
@ -428,7 +457,7 @@ class SmaractController(Controller):
axis.name,
axis.connected,
self.axis_is_referenced(axis.axis_Id_numeric),
self.get_closed_loop_move_speed(axis.axis_Id),
self.get_closed_loop_move_speed(axis.axis_Id_numeric),
axis.readback.read().get(axis.name).get("value"),
]
)

View File

@ -57,10 +57,6 @@ class Controller(OphydObject):
labels=None,
kind=None,
):
self.sock = None
self._socket_cls = socket_cls
self._socket_host = socket_host
self._socket_port = socket_port
if not self._initialized:
super().__init__(
name=name, attr_name=attr_name, parent=parent, labels=labels, kind=kind
@ -69,6 +65,10 @@ class Controller(OphydObject):
self._axis = []
self._initialize()
self._initialized = True
self.sock = None
self._socket_cls = socket_cls
self._socket_host = socket_host
self._socket_port = socket_port
def _initialize(self):
self._connected = False
@ -133,7 +133,7 @@ class Controller(OphydObject):
def off(self) -> None:
"""Close the socket connection to the controller"""
if self.connected or self.sock is not None:
if self.connected and self.sock is not None:
self.sock.close()
self.connected = False
self.sock = None

View File

@ -179,18 +179,29 @@ class SocketSignal(abc.ABC, Signal):
class SocketIO:
"""SocketIO helper class for TCP IP connections"""
def __init__(self, host, port):
def __init__(self, host, port, max_retry=10):
self.host = host
self.port = port
self.is_open = False
self.max_retry = max_retry
self._initialize_socket()
def connect(self):
print(f"connecting to {self.host} port {self.port}")
# self.sock.create_connection((host, port))
if self.sock is None:
self._initialize_socket()
self.sock.connect((self.host, self.port))
retry_count = 0
while True:
try:
if self.sock is None:
self._initialize_socket()
self.sock.connect((self.host, self.port))
break
except Exception as exc:
self.sock = None
time.sleep(2)
retry_count += 1
if retry_count > self.max_retry:
raise exc
def _put(self, msg_bytes):
logger.debug(f"put message: {msg_bytes}")