mirror of
https://github.com/bec-project/bec_widgets.git
synced 2025-07-13 19:21:50 +02:00
Merge branch 'frontend'
This commit is contained in:
@ -11,7 +11,14 @@ class Crosshair(QObject):
|
||||
coordinatesChanged2D = pyqtSignal(float, float)
|
||||
coordinatesClicked2D = pyqtSignal(float, float)
|
||||
|
||||
def __init__(self, plot_item, precision=None, parent=None):
|
||||
def __init__(self, plot_item: pg.PlotItem, precision: int = None, parent=None):
|
||||
"""
|
||||
Crosshair for 1D and 2D plots.
|
||||
Args:
|
||||
plot_item (pyqtgraph.PlotItem): The plot item to which the crosshair will be attached.
|
||||
precision (int, optional): Number of decimal places to round the coordinates to. Defaults to None.
|
||||
parent (QObject, optional): Parent object for the QObject. Defaults to None.
|
||||
"""
|
||||
super().__init__(parent)
|
||||
self.is_log_y = None
|
||||
self.is_log_x = None
|
||||
@ -26,61 +33,93 @@ class Crosshair(QObject):
|
||||
)
|
||||
self.plot_item.scene().sigMouseClicked.connect(self.mouse_clicked)
|
||||
|
||||
# Add marker for clicked and selected point
|
||||
data = self.get_data()
|
||||
if isinstance(data, list): # 1D plot
|
||||
num_curves = len(data)
|
||||
self.marker_moved_1d = []
|
||||
self.marker_clicked_1d = []
|
||||
for i in range(num_curves):
|
||||
color = plot_item.listDataItems()[i].opts["pen"].color()
|
||||
# Initialize markers
|
||||
self.marker_moved_1d = []
|
||||
self.marker_clicked_1d = []
|
||||
self.marker_2d = None
|
||||
self.update_markers()
|
||||
|
||||
def update_markers(self):
|
||||
"""Update the markers for the crosshair, creating new ones if necessary."""
|
||||
|
||||
# Clear existing markers
|
||||
for marker in self.marker_moved_1d + self.marker_clicked_1d:
|
||||
self.plot_item.removeItem(marker)
|
||||
if self.marker_2d:
|
||||
self.plot_item.removeItem(self.marker_2d)
|
||||
|
||||
# Create new markers
|
||||
self.marker_moved_1d = []
|
||||
self.marker_clicked_1d = []
|
||||
self.marker_2d = None
|
||||
for item in self.plot_item.items:
|
||||
if isinstance(item, pg.PlotDataItem): # 1D plot
|
||||
pen = item.opts["pen"]
|
||||
color = pen.color() if hasattr(pen, "color") else pg.mkColor(pen)
|
||||
marker_moved = pg.ScatterPlotItem(
|
||||
size=10, pen=pg.mkPen(color), brush=pg.mkBrush(None)
|
||||
) # Hollow
|
||||
)
|
||||
marker_clicked = pg.ScatterPlotItem(
|
||||
size=10, pen=pg.mkPen(None), brush=pg.mkBrush(color)
|
||||
) # Full
|
||||
)
|
||||
self.marker_moved_1d.append(marker_moved)
|
||||
self.marker_clicked_1d.append(marker_clicked)
|
||||
self.plot_item.addItem(marker_moved)
|
||||
self.plot_item.addItem(marker_clicked)
|
||||
else: # 2D plot
|
||||
self.marker_2d = pg.ROI([0, 0], size=[1, 1], pen=pg.mkPen("r", width=2), movable=False)
|
||||
self.plot_item.addItem(self.marker_2d)
|
||||
elif isinstance(item, pg.ImageItem): # 2D plot
|
||||
self.marker_2d = pg.ROI(
|
||||
[0, 0], size=[1, 1], pen=pg.mkPen("r", width=2), movable=False
|
||||
)
|
||||
self.plot_item.addItem(self.marker_2d)
|
||||
|
||||
def get_data(self):
|
||||
curves = []
|
||||
def snap_to_data(self, x, y) -> tuple:
|
||||
"""
|
||||
Finds the nearest data points to the given x and y coordinates.
|
||||
|
||||
Args:
|
||||
x: The x-coordinate
|
||||
y: The y-coordinate
|
||||
|
||||
Returns:
|
||||
tuple: The nearest x and y values
|
||||
"""
|
||||
y_values_1d = []
|
||||
x_values_1d = []
|
||||
image_2d = None
|
||||
|
||||
# Iterate through items in the plot
|
||||
for item in self.plot_item.items:
|
||||
if isinstance(item, pg.PlotDataItem): # 1D plot
|
||||
curves.append((item.xData, item.yData))
|
||||
x_data, y_data = item.xData, item.yData
|
||||
if x_data is not None and y_data is not None:
|
||||
if self.is_log_x:
|
||||
min_x_data = np.min(x_data[x_data > 0])
|
||||
else:
|
||||
min_x_data = np.min(x_data)
|
||||
max_x_data = np.max(x_data)
|
||||
if x < min_x_data or x > max_x_data:
|
||||
return None, None
|
||||
closest_x, closest_y = self.closest_x_y_value(x, x_data, y_data)
|
||||
y_values_1d.append(closest_y)
|
||||
x_values_1d.append(closest_x)
|
||||
elif isinstance(item, pg.ImageItem): # 2D plot
|
||||
return item.image, None
|
||||
image_2d = item.image
|
||||
|
||||
return curves
|
||||
# Handle 1D plot
|
||||
if y_values_1d:
|
||||
if all(v is None for v in x_values_1d) or all(v is None for v in y_values_1d):
|
||||
return None, None
|
||||
return x, y_values_1d
|
||||
|
||||
# if curves:
|
||||
# return curves
|
||||
# else:
|
||||
# return None
|
||||
|
||||
def snap_to_data(self, x, y):
|
||||
data = self.get_data()
|
||||
# if data is None: #TODO hadle if data are None
|
||||
# return x, y
|
||||
|
||||
if isinstance(data, list): # 1D plot
|
||||
y_values = []
|
||||
for x_data, y_data in data:
|
||||
closest_x, closest_y = self.closest_x_y_value(x, x_data, y_data)
|
||||
y_values.append(closest_y)
|
||||
return x, y_values
|
||||
elif isinstance(data[0], np.ndarray): # 2D plot
|
||||
x_idx = int(np.clip(x, 0, data[0].shape[0] - 1))
|
||||
y_idx = int(np.clip(y, 0, data[0].shape[1] - 1))
|
||||
# Handle 2D plot
|
||||
if image_2d is not None:
|
||||
x_idx = int(np.clip(x, 0, image_2d.shape[0] - 1))
|
||||
y_idx = int(np.clip(y, 0, image_2d.shape[1] - 1))
|
||||
return x_idx, y_idx
|
||||
return x, y
|
||||
|
||||
def closest_x_y_value(self, input_value, list_x, list_y):
|
||||
return None, None
|
||||
|
||||
def closest_x_y_value(self, input_value: float, list_x: list, list_y: list) -> tuple:
|
||||
"""
|
||||
Find the closest x and y value to the input value.
|
||||
|
||||
@ -97,6 +136,11 @@ class Crosshair(QObject):
|
||||
return list_x[i], list_y[i]
|
||||
|
||||
def mouse_moved(self, event):
|
||||
"""Handles the mouse moved event, updating the crosshair position and emitting signals.
|
||||
|
||||
Args:
|
||||
event: The mouse moved event
|
||||
"""
|
||||
self.check_log()
|
||||
pos = event[0]
|
||||
if self.plot_item.vb.sceneBoundingRect().contains(pos):
|
||||
@ -111,44 +155,61 @@ class Crosshair(QObject):
|
||||
y = 10**y
|
||||
x, y_values = self.snap_to_data(x, y)
|
||||
|
||||
if isinstance(y_values, list): # 1D plot
|
||||
self.coordinatesChanged1D.emit(
|
||||
round(x, self.precision), [round(y_val, self.precision) for y_val in y_values]
|
||||
)
|
||||
for i, y_val in enumerate(y_values):
|
||||
self.marker_moved_1d[i].setData(
|
||||
[x if not self.is_log_x else np.log10(x)],
|
||||
[y_val if not self.is_log_y else np.log10(y_val)],
|
||||
for item in self.plot_item.items:
|
||||
if isinstance(item, pg.PlotDataItem):
|
||||
if x is None or all(v is None for v in y_values):
|
||||
return
|
||||
self.coordinatesChanged1D.emit(
|
||||
round(x, self.precision),
|
||||
[round(y_val, self.precision) for y_val in y_values],
|
||||
)
|
||||
else: # 2D plot
|
||||
self.coordinatesChanged2D.emit(x, y_values)
|
||||
for i, y_val in enumerate(y_values):
|
||||
self.marker_moved_1d[i].setData(
|
||||
[x if not self.is_log_x else np.log10(x)],
|
||||
[y_val if not self.is_log_y else np.log10(y_val)],
|
||||
)
|
||||
elif isinstance(item, pg.ImageItem):
|
||||
if x is None or y_values is None:
|
||||
return
|
||||
self.coordinatesChanged2D.emit(x, y_values)
|
||||
|
||||
def mouse_clicked(self, event):
|
||||
"""Handles the mouse clicked event, updating the crosshair position and emitting signals.
|
||||
|
||||
Args:
|
||||
event: The mouse clicked event
|
||||
"""
|
||||
self.check_log()
|
||||
if self.plot_item.vb.sceneBoundingRect().contains(event._scenePos):
|
||||
mouse_point = self.plot_item.vb.mapSceneToView(event._scenePos)
|
||||
x, y = mouse_point.x(), mouse_point.y()
|
||||
|
||||
if self.is_log_x:
|
||||
x = 10**x
|
||||
if self.is_log_y:
|
||||
y = 10**y
|
||||
x, y_values = self.snap_to_data(x, y)
|
||||
if isinstance(y_values, list): # 1D plot
|
||||
self.coordinatesClicked1D.emit(
|
||||
round(x, self.precision), [round(y_val, self.precision) for y_val in y_values]
|
||||
)
|
||||
for i, y_val in enumerate(y_values):
|
||||
self.marker_clicked_1d[i].setData(
|
||||
[x if not self.is_log_x else np.log10(x)],
|
||||
[y_val if not self.is_log_y else np.log10(y_val)],
|
||||
|
||||
for item in self.plot_item.items:
|
||||
if isinstance(item, pg.PlotDataItem):
|
||||
if x is None or all(v is None for v in y_values):
|
||||
return
|
||||
self.coordinatesClicked1D.emit(
|
||||
round(x, self.precision),
|
||||
[round(y_val, self.precision) for y_val in y_values],
|
||||
)
|
||||
else: # 2D plot
|
||||
self.coordinatesClicked2D.emit(x, y_values)
|
||||
self.marker_2d.setPos([x, y_values])
|
||||
for i, y_val in enumerate(y_values):
|
||||
self.marker_clicked_1d[i].setData(
|
||||
[x if not self.is_log_x else np.log10(x)],
|
||||
[y_val if not self.is_log_y else np.log10(y_val)],
|
||||
)
|
||||
elif isinstance(item, pg.ImageItem):
|
||||
if x is None or y_values is None:
|
||||
return
|
||||
self.coordinatesClicked2D.emit(x, y_values)
|
||||
self.marker_2d.setPos([x, y_values])
|
||||
|
||||
def check_log(self):
|
||||
"""
|
||||
Check if x or y axis is in log scale
|
||||
"""
|
||||
"""Checks if the x or y axis is in log scale and updates the internal state accordingly."""
|
||||
self.is_log_x = self.plot_item.ctrl.logXCheck.isChecked()
|
||||
self.is_log_y = self.plot_item.ctrl.logYCheck.isChecked()
|
||||
|
@ -8,6 +8,7 @@ from PyQt5.QtWidgets import (
|
||||
QHBoxLayout,
|
||||
QTableWidget,
|
||||
QTableWidgetItem,
|
||||
QSpinBox,
|
||||
)
|
||||
from pyqtgraph import mkPen
|
||||
from pyqtgraph.Qt import QtCore
|
||||
@ -40,25 +41,15 @@ class ExampleApp(QWidget):
|
||||
|
||||
# same convention as in line_plot.py
|
||||
self.y_value_list = [
|
||||
np.sin(self.x_data),
|
||||
np.cos(self.x_data),
|
||||
np.sin(2 * self.x_data),
|
||||
gauss(self.x_data, 1, 1),
|
||||
gauss(self.x_data, 1.5, 3),
|
||||
abs(np.sin(self.x_data)),
|
||||
abs(np.cos(self.x_data)),
|
||||
abs(np.sin(2 * self.x_data)),
|
||||
] # List of y-values for multiple curves
|
||||
|
||||
self.y_value_list = [gauss(self.x_data, 1, 1), gauss(self.x_data, 1.5, 3)]
|
||||
self.curve_names = ["Gauss(1,1)", "Gauss(1.5,3)"] # ,"Sine", "Cosine", "Sine2x"]
|
||||
|
||||
# Curves
|
||||
color_list = ["#384c6b", "#e28a2b", "#5E3023", "#e41a1c", "#984e83", "#4daf4a"]
|
||||
self.plot_item_1d.addLegend()
|
||||
self.curve_names = ["Gauss(1,1)", "Gauss(1.5,3)", "Abs(Sine)", "Abs(Cosine)", "Abs(Sine2x)"]
|
||||
self.curves = []
|
||||
for ii, y_value in enumerate(self.y_value_list):
|
||||
pen = mkPen(color=color_list[ii], width=2, style=QtCore.Qt.DashLine)
|
||||
curve = pg.PlotDataItem(
|
||||
self.x_data, y_value, pen=pen, skipFiniteCheck=True, name=self.curve_names[ii]
|
||||
)
|
||||
self.plot_item_1d.addItem(curve)
|
||||
self.curves.append(curve)
|
||||
|
||||
##########################
|
||||
# 2D Plot
|
||||
@ -78,24 +69,13 @@ class ExampleApp(QWidget):
|
||||
self.table.resizeColumnsToContents()
|
||||
|
||||
##########################
|
||||
# Signals & Cross-hairs
|
||||
# Spinbox for N curves
|
||||
##########################
|
||||
# 1D
|
||||
self.crosshair_1d = Crosshair(self.plot_item_1d, precision=4)
|
||||
self.crosshair_1d.coordinatesChanged1D.connect(
|
||||
lambda x, y: self.update_table(self.table, x, y, column=0)
|
||||
)
|
||||
self.crosshair_1d.coordinatesClicked1D.connect(
|
||||
lambda x, y: self.update_table(self.table, x, y, column=1)
|
||||
)
|
||||
# 2D
|
||||
self.crosshair_2d = Crosshair(self.plot_item_2d)
|
||||
self.crosshair_2d.coordinatesChanged2D.connect(
|
||||
lambda x, y: self.moved_label_2d.setText(f"Mouse Moved Coordinates (2D): x={x}, y={y}")
|
||||
)
|
||||
self.crosshair_2d.coordinatesClicked2D.connect(
|
||||
lambda x, y: self.clicked_label_2d.setText(f"Clicked Coordinates (2D): x={x}, y={y}")
|
||||
)
|
||||
self.spin_box = QSpinBox()
|
||||
self.spin_box.setMinimum(0)
|
||||
self.spin_box.setMaximum(len(self.y_value_list))
|
||||
self.spin_box.setValue(2)
|
||||
self.spin_box.valueChanged.connect(lambda: self.update_curves(self.spin_box.value()))
|
||||
|
||||
##########################
|
||||
# Adding widgets to layout
|
||||
@ -105,6 +85,12 @@ class ExampleApp(QWidget):
|
||||
self.column1 = QVBoxLayout()
|
||||
self.layout.addLayout(self.column1)
|
||||
|
||||
# SpinBox
|
||||
self.spin_row = QHBoxLayout()
|
||||
self.column1.addLayout(self.spin_row)
|
||||
self.spin_row.addWidget(QLabel("Number of curves:"))
|
||||
self.spin_row.addWidget(self.spin_box)
|
||||
|
||||
# label
|
||||
self.clicked_label_1d = QLabel("Clicked Coordinates (1D):")
|
||||
self.column1.addWidget(self.clicked_label_1d)
|
||||
@ -128,12 +114,53 @@ class ExampleApp(QWidget):
|
||||
# 2D plot
|
||||
self.column2.addWidget(self.plot_widget_2d)
|
||||
|
||||
self.update_curves(2) # just Gaussian curves
|
||||
|
||||
def hook_crosshair(self):
|
||||
self.crosshair_1d = Crosshair(self.plot_item_1d, precision=10)
|
||||
self.crosshair_1d.coordinatesChanged1D.connect(
|
||||
lambda x, y: self.update_table(self.table, x, y, column=0)
|
||||
)
|
||||
self.crosshair_1d.coordinatesClicked1D.connect(
|
||||
lambda x, y: self.update_table(self.table, x, y, column=1)
|
||||
)
|
||||
# 2D
|
||||
self.crosshair_2d = Crosshair(self.plot_item_2d)
|
||||
self.crosshair_2d.coordinatesChanged2D.connect(
|
||||
lambda x, y: self.moved_label_2d.setText(f"Mouse Moved Coordinates (2D): x={x}, y={y}")
|
||||
)
|
||||
self.crosshair_2d.coordinatesClicked2D.connect(
|
||||
lambda x, y: self.clicked_label_2d.setText(f"Clicked Coordinates (2D): x={x}, y={y}")
|
||||
)
|
||||
|
||||
def update_table(self, table_widget, x, y_values, column):
|
||||
"""Update the table with the new coordinates"""
|
||||
for i, y in enumerate(y_values):
|
||||
table_widget.setItem(i, column, QTableWidgetItem(f"({x}, {y})"))
|
||||
table_widget.resizeColumnsToContents()
|
||||
|
||||
def update_curves(self, num_curves):
|
||||
"""Update the number of curves"""
|
||||
|
||||
self.plot_item_1d.clear()
|
||||
|
||||
# Curves
|
||||
color_list = ["#384c6b", "#e28a2b", "#5E3023", "#e41a1c", "#984e83", "#4daf4a"]
|
||||
self.plot_item_1d.addLegend()
|
||||
self.curves = []
|
||||
|
||||
y_value_list = self.y_value_list[:num_curves]
|
||||
|
||||
for ii, y_value in enumerate(y_value_list):
|
||||
pen = mkPen(color=color_list[ii], width=2, style=QtCore.Qt.DashLine)
|
||||
curve = pg.PlotDataItem(
|
||||
self.x_data, y_value, pen=pen, skipFiniteCheck=True, name=self.curve_names[ii]
|
||||
)
|
||||
self.plot_item_1d.addItem(curve)
|
||||
self.curves.append(curve)
|
||||
|
||||
self.hook_crosshair()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
app = QApplication([])
|
||||
|
149
tests/test_crosshair.py
Normal file
149
tests/test_crosshair.py
Normal file
@ -0,0 +1,149 @@
|
||||
import numpy as np
|
||||
import pyqtgraph as pg
|
||||
from PyQt5.QtCore import QPointF
|
||||
|
||||
from bec_widgets.qt_utils import Crosshair
|
||||
|
||||
|
||||
def test_mouse_moved_lines(qtbot):
|
||||
# Create a PlotWidget and add a PlotItem
|
||||
plot_widget = pg.PlotWidget(title="1D PlotWidget with multiple curves")
|
||||
plot_item = plot_widget.getPlotItem()
|
||||
plot_item.plot([1, 2, 3], [4, 5, 6])
|
||||
|
||||
# Create a Crosshair instance
|
||||
crosshair = Crosshair(plot_item=plot_item, precision=2)
|
||||
|
||||
# Connect the signals to slots that will store the emitted values
|
||||
emitted_values_1D = []
|
||||
crosshair.coordinatesChanged1D.connect(emitted_values_1D.append)
|
||||
|
||||
# Simulate a mouse moved event at a specific position
|
||||
pos_in_view = QPointF(2, 5)
|
||||
pos_in_scene = plot_item.vb.mapViewToScene(pos_in_view)
|
||||
event_mock = [pos_in_scene]
|
||||
|
||||
# Call the mouse_moved method
|
||||
crosshair.mouse_moved(event_mock)
|
||||
|
||||
# Assert the expected behavior
|
||||
assert crosshair.v_line.pos().x() == 2
|
||||
assert crosshair.h_line.pos().y() == 5
|
||||
|
||||
|
||||
def test_mouse_moved_signals(qtbot):
|
||||
# Create a PlotWidget and add a PlotItem
|
||||
plot_widget = pg.PlotWidget(title="1D PlotWidget with multiple curves")
|
||||
plot_item = plot_widget.getPlotItem()
|
||||
plot_item.plot([1, 2, 3], [4, 5, 6])
|
||||
|
||||
# Create a Crosshair instance
|
||||
crosshair = Crosshair(plot_item=plot_item, precision=2)
|
||||
|
||||
# Create a slot that will store the emitted values as tuples
|
||||
emitted_values_1D = []
|
||||
|
||||
def slot(x, y_values):
|
||||
emitted_values_1D.append((x, y_values))
|
||||
|
||||
# Connect the signal to the custom slot
|
||||
crosshair.coordinatesChanged1D.connect(slot)
|
||||
|
||||
# Simulate a mouse moved event at a specific position
|
||||
pos_in_view = QPointF(2, 5)
|
||||
pos_in_scene = plot_item.vb.mapViewToScene(pos_in_view)
|
||||
event_mock = [pos_in_scene]
|
||||
|
||||
# Call the mouse_moved method
|
||||
crosshair.mouse_moved(event_mock)
|
||||
|
||||
# Assert the expected behavior
|
||||
assert emitted_values_1D == [(2.0, [5.0])]
|
||||
|
||||
|
||||
def test_mouse_moved_signals_outside(qtbot):
|
||||
# Create a PlotWidget and add a PlotItem
|
||||
plot_widget = pg.PlotWidget(title="1D PlotWidget with multiple curves")
|
||||
plot_item = plot_widget.getPlotItem()
|
||||
plot_item.plot([1, 2, 3], [4, 5, 6])
|
||||
|
||||
# Create a Crosshair instance
|
||||
crosshair = Crosshair(plot_item=plot_item, precision=2)
|
||||
|
||||
# Create a slot that will store the emitted values as tuples
|
||||
emitted_values_1D = []
|
||||
|
||||
def slot(x, y_values):
|
||||
emitted_values_1D.append((x, y_values))
|
||||
|
||||
# Connect the signal to the custom slot
|
||||
crosshair.coordinatesChanged1D.connect(slot)
|
||||
|
||||
# Simulate a mouse moved event at a specific position
|
||||
pos_in_view = QPointF(22, 55)
|
||||
pos_in_scene = plot_item.vb.mapViewToScene(pos_in_view)
|
||||
event_mock = [pos_in_scene]
|
||||
|
||||
# Call the mouse_moved method
|
||||
crosshair.mouse_moved(event_mock)
|
||||
|
||||
# Assert the expected behavior
|
||||
assert emitted_values_1D == []
|
||||
|
||||
|
||||
def test_mouse_moved_signals_2D(qtbot):
|
||||
# write similar test for 2D plot
|
||||
|
||||
# Create a PlotWidget and add a PlotItem
|
||||
plot_widget = pg.PlotWidget(title="2D plot with crosshair and ROI square")
|
||||
data_2D = np.random.random((100, 200))
|
||||
plot_item = plot_widget.getPlotItem()
|
||||
image_item = pg.ImageItem(data_2D)
|
||||
plot_item.addItem(image_item)
|
||||
# Create a Crosshair instance
|
||||
crosshair = Crosshair(plot_item=plot_item)
|
||||
# Create a slot that will store the emitted values as tuples
|
||||
emitted_values_2D = []
|
||||
|
||||
def slot(x, y):
|
||||
emitted_values_2D.append((x, y))
|
||||
|
||||
# Connect the signal to the custom slot
|
||||
crosshair.coordinatesChanged2D.connect(slot)
|
||||
# Simulate a mouse moved event at a specific position
|
||||
pos_in_view = QPointF(22.0, 55.0)
|
||||
pos_in_scene = plot_item.vb.mapViewToScene(pos_in_view)
|
||||
event_mock = [pos_in_scene]
|
||||
# Call the mouse_moved method
|
||||
crosshair.mouse_moved(event_mock)
|
||||
# Assert the expected behavior
|
||||
assert emitted_values_2D == [(22.0, 55.0)]
|
||||
|
||||
|
||||
def test_mouse_moved_signals_2D_outside(qtbot):
|
||||
# write similar test for 2D plot
|
||||
|
||||
# Create a PlotWidget and add a PlotItem
|
||||
plot_widget = pg.PlotWidget(title="2D plot with crosshair and ROI square")
|
||||
data_2D = np.random.random((100, 200))
|
||||
plot_item = plot_widget.getPlotItem()
|
||||
image_item = pg.ImageItem(data_2D)
|
||||
plot_item.addItem(image_item)
|
||||
# Create a Crosshair instance
|
||||
crosshair = Crosshair(plot_item=plot_item, precision=2)
|
||||
# Create a slot that will store the emitted values as tuples
|
||||
emitted_values_2D = []
|
||||
|
||||
def slot(x, y):
|
||||
emitted_values_2D.append((x, y))
|
||||
|
||||
# Connect the signal to the custom slot
|
||||
crosshair.coordinatesChanged2D.connect(slot)
|
||||
# Simulate a mouse moved event at a specific position
|
||||
pos_in_view = QPointF(220.0, 555.0)
|
||||
pos_in_scene = plot_item.vb.mapViewToScene(pos_in_view)
|
||||
event_mock = [pos_in_scene]
|
||||
# Call the mouse_moved method
|
||||
crosshair.mouse_moved(event_mock)
|
||||
# Assert the expected behavior
|
||||
assert emitted_values_2D == []
|
Reference in New Issue
Block a user