MLXID: Eta Interpolation

Overview

The project provides functions, scripts, and notebooks for:

  • Generating and visualizing eta interpolation lookup tables (LUTs)
  • Processing raw detector data (calibration and cluster finding)
  • Mapping non-uniform 2D distributions to uniform distributions using Rosenblatt or DoubleCDF methods

Example Workflows

Eta Interpolation for MC (see Examples/etaInterpolation_MC.ipynb)

  • Generate a non-uniform 2D distribution (e.g., spiral)
  • Build 2D histograms and LUTs using Rosenblatt or DoubleCDF methods
  • Map (x, y) to (u, v) for uniformity
  • Visualize results and evaluate residuals

Eta Interpolation for SiemenStar data (see Examples/etaInterpolation_SiemenStar.ipynb)

  • Configure measurement parameters (ROI, calibration files, LUTs)
  • Initialize and process raw detector frames
  • Generate and visualize interpolated 2D histograms

Requirements

  • Python 3.8+
  • numpy, matplotlib, glob
  • ROOT (for histogramming and advanced analysis)
  • Jupyter Notebook (for interactive analysis)
Description
No description provided
Readme 1.4 MiB
Languages
Python 100%