Add inference

This commit is contained in:
2025-10-22 08:05:00 +02:00
parent 324b81fc1b
commit 4657add41d

83
Inference_SinglePhoton.py Normal file
View File

@@ -0,0 +1,83 @@
import torch
import sys
sys.path.append('./src')
from models import *
from datasets import *
from tqdm import tqdm
from matplotlib import pyplot as plt
configs = {}
configs['SiemenStar'] = {
'dataFiles': [f'/home/xie_x1/MLXID/DeepLearning/SiemenStarClusters/clusters_chunk{i}.h5' for i in range(100)],
'modelVersion': 'singlePhotonNet_251020',
'roi': [140, 230, 120, 210], # x_min, x_max, y_min, y_max,
'noise': 0.13 # in keV
}
BinningFactor = 10
Roi = configs['SiemenStar']['roi']
X_st, X_ed, Y_st, Y_ed = Roi
mlSuperFrame = np.zeros(((Y_ed-Y_st)*BinningFactor, (X_ed-X_st)*BinningFactor))
countFrame = np.zeros((Y_ed-Y_st, X_ed-X_st))
subpixelDistribution = np.zeros((BinningFactor, BinningFactor))
if __name__ == "__main__":
task = 'SiemenStar'
config = configs[task]
if config['modelVersion'] == 'singlePhotonNet_251020':
model = singlePhotonNet_251020().cuda()
model.load_state_dict(torch.load(f'/home/xie_x1/MLXID/DeepLearning/Models/singlePhotonNet_Noise{config["noise"]}keV_251020.pth', weights_only=True))
dataset = singlePhotonDataset(config['dataFiles'], sampleRatio=1.0, datasetName='Inference')
dataLoader = torch.utils.data.DataLoader(
dataset,
batch_size=4096,
shuffle=False,
num_workers=16,
pin_memory=True,
)
referencePoints = dataset.referencePoint
predictions = []
with torch.no_grad():
for batch in tqdm(dataLoader):
inputs, _ = batch
inputs = inputs.cuda()
outputs = model(inputs)
predictions.append(outputs.cpu())
predictions = torch.cat(predictions, dim=0)
print(f'mean x = {torch.mean(predictions[:, 0])}, std x = {torch.std(predictions[:, 0])}')
print(f'mean y = {torch.mean(predictions[:, 1])}, std y = {torch.std(predictions[:, 1])}')
absolutePositions = predictions.numpy() + referencePoints[:, :2] - 1
hit_x = np.floor((absolutePositions[:, 0] - Roi[0]) * BinningFactor).astype(int)
hit_x = np.clip(hit_x, 0, mlSuperFrame.shape[1]-1)
hit_y = np.floor((absolutePositions[:, 1] - Roi[2]) * BinningFactor).astype(int)
hit_y = np.clip(hit_y, 0, mlSuperFrame.shape[0]-1)
np.add.at(mlSuperFrame, (hit_y, hit_x), 1)
np.add.at(countFrame, ((referencePoints[:, 1] - Roi[2]).astype(int),
(referencePoints[:, 0] - Roi[0]).astype(int)), 1)
np.add.at(subpixelDistribution,
(np.floor((absolutePositions[:, 1] % 1) * BinningFactor).astype(int),
np.floor((absolutePositions[:, 0] % 1) * BinningFactor).astype(int)), 1)
plt.imshow(mlSuperFrame, origin='lower', extent=[Y_st, Y_ed, X_st, X_ed])
plt.colorbar()
plt.savefig('InferenceResults/SiemenStar_ML_superFrame.png', dpi=300)
np.save('InferenceResults/SiemenStar_ML_superFrame.npy', mlSuperFrame)
plt.clf()
plt.imshow(countFrame, origin='lower', extent=[Y_st, Y_ed, X_st, X_ed])
plt.colorbar()
plt.savefig('InferenceResults/SiemenStar_count_Frame.png', dpi=300)
np.save('InferenceResults/SiemenStar_count_Frame.npy', countFrame)
plt.clf()
plt.imshow(subpixelDistribution, origin='lower')
plt.colorbar()
plt.savefig('InferenceResults/SiemenStar_subpixel_Distribution.png', dpi=300)
np.save('InferenceResults/SiemenStar_subpixel_Distribution.npy', subpixelDistribution)