Add DL codes

This commit is contained in:
2025-10-08 08:00:24 +02:00
commit 3b758ac42e
4 changed files with 517 additions and 0 deletions

86
Train.py Normal file
View File

@@ -0,0 +1,86 @@
import sys
sys.path.append('./src')
import torch
import numpy as np
from models import *
from datasets import *
import torch.optim as optim
from tqdm import tqdm
TrainLosses, TestLosses = [], []
def train(model, trainLoader, optimizer):
model.train()
batchLoss = 0
for batch_idx, (sample, label) in enumerate(trainLoader):
sample, label = sample.cuda(), label.cuda()
x, y, z, e = label[:,0], label[:,1], label[:,2], label[:,3]
optimizer.zero_grad()
output = model(sample)
loss = torch.nn.functional.mse_loss(output, torch.stack((x, y), axis=1))
loss.backward()
optimizer.step()
batchLoss += loss.item() * sample.shape[0]
avgLoss = batchLoss / len(trainLoader.dataset)
print(f"[Train] Average Loss: {avgLoss:.6f} (sigma = {np.sqrt(avgLoss):.6f})")
TrainLosses.append(avgLoss)
def test(model, testLoader):
model.eval()
batchLoss = 0
with torch.no_grad():
for batch_idx, (sample, label) in enumerate(testLoader):
sample, label = sample.cuda(), label.cuda()
x, y, z, e = label[:,0], label[:,1], label[:,2], label[:,3]
output = model(sample)
loss = torch.nn.functional.mse_loss(output, torch.stack((x, y), axis=1))
batchLoss += loss.item() * sample.shape[0]
avgLoss = batchLoss / len(testLoader.dataset)
print(f"[Test] Average Loss: {avgLoss:.6f} (sigma = {np.sqrt(avgLoss):.6f})")
TestLosses.append(avgLoss)
return avgLoss
model = singlePhotonNet_250909().cuda()
from glob import glob
sampleFileList = glob('/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_*_samples.npy')
labelFileList = glob('/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_*_labels.npy')
trainDataset = singlePhotonDataset(sampleFileList, labelFileList, sampleRatio=0.1)
nTrainSamples = int(0.8 * len(trainDataset))
nTestSamples = len(trainDataset) - nTrainSamples
trainDataset, testDataset = torch.utils.data.random_split(trainDataset, [nTrainSamples, nTestSamples])
trainLoader = torch.utils.data.DataLoader(
trainDataset,
batch_size=1024,
pin_memory = True,
shuffle=True,
num_workers=16
)
testLoader = torch.utils.data.DataLoader(
testDataset,
batch_size=4096,
shuffle=False,
num_workers=16
)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.7, patience = 5, verbose = True)
if __name__ == "__main__":
for epoch in tqdm(range(1, 201)):
train(model, trainLoader, optimizer)
test(model, testLoader)
scheduler.step(TestLosses[-1])
torch.save(model.state_dict(), 'singlePhotonNet_250909.pth')
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
plt.plot(TrainLosses, label='Train Loss')
plt.plot(TestLosses, label='Test Loss')
plt.yscale('log')
plt.xlabel('Epoch')
plt.ylabel('MSE Loss')
plt.legend()
plt.grid()
plt.savefig('loss_curve.png', dpi=300)

163
Train_doublePhoton.py Normal file
View File

@@ -0,0 +1,163 @@
import sys
sys.path.append('./src')
import torch
import numpy as np
from models import *
from datasets import *
import torch.optim as optim
from tqdm import tqdm
modelVersion = '251001_2' # '250910' or '251001'
TrainLosses, ValLosses = [], []
TestLoss = -1
def two_point_set_loss_l2(pred_xy, gt_xy):
def pair_cost_l2sq(p, q): # p,q: (...,2)
return ((p - q)**2).sum(dim=-1) # squared L2
p1, p2 = pred_xy[:,0], pred_xy[:,1]
g1, g2 = gt_xy[:,0], gt_xy[:,1]
c_a = pair_cost_l2sq(p1,g1) + pair_cost_l2sq(p2,g2)
c_b = pair_cost_l2sq(p1,g2) + pair_cost_l2sq(p2,g1)
return torch.minimum(c_a, c_b).mean()
def min_matching_loss(pred, target):
"""
pred: [B, 4] -> (x1,y1,x2,y2)
target: [B, 4] -> (x1,y1,x2,y2)
"""
pred = pred.view(-1, 2, 2) # [B, 2, 2]
target = target.view(-1, 2, 2) # [B, 2, 2]
# 计算所有匹配的MSE
loss1 = torch.mean((pred[:,0] - target[:,0])**2 + (pred[:,1] - target[:,1])**2)
loss2 = torch.mean((pred[:,0] - target[:,1])**2 + (pred[:,1] - target[:,0])**2)
return torch.min(loss1, loss2)
# switch modelVersion:
if modelVersion == '250910':
loss_fn = two_point_set_loss_l2
model = doublePhotonNet_250910().cuda()
elif modelVersion == '251001':
loss_fn = min_matching_loss
model = doublePhotonNet_251001().cuda()
elif modelVersion == '251001_2':
loss_fn = min_matching_loss
model = doublePhotonNet_251001_2().cuda()
def train(model, trainLoader, optimizer):
model.train()
batchLoss = 0
for batch_idx, (sample, label) in enumerate(trainLoader):
sample, label = sample.cuda(), label.cuda()
x1, y1, z1, e1 = label[:,0], label[:,1], label[:,2], label[:,3]
x2, y2, z2, e2 = label[:,4], label[:,5], label[:,6], label[:,7]
gt_xy = torch.stack((torch.stack((x1, y1), axis=1), torch.stack((x2, y2), axis=1)), axis=1)
optimizer.zero_grad()
output = model(sample)
pred_xy = torch.stack((output[:,0:2], output[:,2:4]), axis=1)
loss = loss_fn(pred_xy, gt_xy)
loss.backward()
optimizer.step()
batchLoss += loss.item() * sample.shape[0]
avgLoss = batchLoss / len(trainLoader.dataset) /2 ### divide by 2 to get the average loss per photon
print(f"[Train]\t Average Loss: {avgLoss:.6f} (RMS = {np.sqrt(avgLoss):.6f})")
TrainLosses.append(avgLoss)
def test(model, testLoader):
model.eval()
batchLoss = 0
residuals_x, residuals_y = np.array([]), np.array([])
with torch.no_grad():
for batch_idx, (sample, label) in enumerate(testLoader):
sample, label = sample.cuda(), label.cuda()
x1, y1, z1, e1 = label[:,0], label[:,1], label[:,2], label[:,3]
x2, y2, z2, e2 = label[:,4], label[:,5], label[:,6], label[:,7]
gt_xy = torch.stack((torch.stack((x1, y1), axis=1), torch.stack((x2, y2), axis=1)), axis=1)
output = model(sample)
pred_xy = torch.stack((output[:,0:2], output[:,2:4]), axis=1)
loss = loss_fn(pred_xy, gt_xy)
batchLoss += loss.item() * sample.shape[0]
### Collect residuals for analysis
residuals_x = np.concatenate((residuals_x, (pred_xy[:,0,0] - gt_xy[:,0,0]).cpu().numpy(), (pred_xy[:,1,0] - gt_xy[:,1,0]).cpu().numpy()))
residuals_y = np.concatenate((residuals_y, (pred_xy[:,0,1] - gt_xy[:,0,1]).cpu().numpy(), (pred_xy[:,1,1] - gt_xy[:,1,1]).cpu().numpy()))
avgLoss = batchLoss / len(testLoader.dataset)
datasetName = testLoader.dataset.datasetName
print(f"[{datasetName}]\t Average Loss: {avgLoss:.6f} (RMS = {np.sqrt(avgLoss):.6f})")
print(f" Residuals X: mean={np.mean(residuals_x):.4f}, std={np.std(residuals_x):.4f}")
print(f" Residuals Y: mean={np.mean(residuals_y):.4f}, std={np.std(residuals_y):.4f}")
if datasetName == 'Val':
ValLosses.append(avgLoss)
else:
global TestLoss
TestLoss = avgLoss
return avgLoss
trainDataset = doublePhotonDataset(
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_samples.npy' for i in range(13)],
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_labels.npy' for i in range(13)],
sampleRatio=1.0,
datasetName='Train',
reuselFactor=1,
)
valDataset = doublePhotonDataset(
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_samples.npy' for i in range(13,14)],
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_labels.npy' for i in range(13,14)],
sampleRatio=1.0,
datasetName='Val',
reuselFactor=1,
)
testDataset = doublePhotonDataset(
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_samples.npy' for i in range(15,16)],
[f'/home/xie_x1/MLXID/McGeneration/Samples/15keV_Moench040_150V_{i}_labels.npy' for i in range(15,16)],
sampleRatio=1.0,
datasetName='Test',
reuselFactor=1,
)
trainLoader = torch.utils.data.DataLoader(
trainDataset,
batch_size=1024,
pin_memory = True,
shuffle=True,
num_workers=16
)
valLoader = torch.utils.data.DataLoader(
valDataset,
batch_size=4096,
shuffle=False,
num_workers=16
)
testLoader = torch.utils.data.DataLoader(
testDataset,
batch_size=4096,
shuffle=False,
num_workers=16
)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', factor=0.7, patience = 5)
# if __name__ == "__main__":
# for epoch in tqdm(range(1, 301)):
# train(model, trainLoader, optimizer)
# test(model, valLoader)
# scheduler.step(TrainLosses[-1])
model.load_state_dict(torch.load('doublePhotonNet_251001_2.pth', weights_only=True))
test(model, testLoader)
torch.save(model.state_dict(), f'doublePhotonNet_{modelVersion}.pth')
def plot_loss_curve(TrainLosses, ValLosses, TestLoss, modelVersion):
import matplotlib.pyplot as plt
plt.figure(figsize=(8,6))
plt.plot(TrainLosses, label='Train Loss', color='blue')
plt.plot(ValLosses, label='Validation Loss', color='orange')
if TestLoss > 0:
plt.axhline(y=TestLoss, color='green', linestyle='--', label='Test Loss')
plt.yscale('log')
plt.xlabel('Epoch')
plt.ylabel('MSE Loss')
plt.legend()
plt.grid()
plt.savefig(f'loss_curve_doublePhoton_{modelVersion}.png', dpi=300)
# plot_loss_curve(TrainLosses, ValLosses, TestLoss, modelVersion=modelVersion)

78
src/datasets.py Normal file
View File

@@ -0,0 +1,78 @@
from torch.utils.data import Dataset
import torch
import numpy as np
class singlePhotonDataset(Dataset):
def __init__(self, sampleList, labelList, sampleRatio):
self.sampleFileList = sampleList
self.labelFileList = labelList
self.sampleRatio = sampleRatio
for idx, sampleFile in enumerate(self.sampleFileList):
if idx == 0:
self.samples = np.load(sampleFile)
self.labels = np.load(self.labelFileList[idx])
else:
self.samples = np.concatenate((self.samples, np.load(sampleFile)), axis=0)
self.labels = np.concatenate((self.labels, np.load(self.labelFileList[idx])), axis=0)
### total number of samples
self.length = int(self.samples.shape[0] * self.sampleRatio)
print(f"Total number of samples: {self.length}")
def __getitem__(self, index):
sample = self.samples[index]
sample = np.expand_dims(sample, axis=0)
label = self.labels[index]
return torch.tensor(sample, dtype=torch.float32), torch.tensor(label, dtype=torch.float32)
def __len__(self):
return self.length
class doublePhotonDataset(Dataset):
def __init__(self, sampleList, labelList, sampleRatio, datasetName, reuselFactor=1):
self.sampleFileList = sampleList
self.labelFileList = labelList
self.sampleRatio = sampleRatio
self.datasetName = datasetName
for idx, sampleFile in enumerate(self.sampleFileList):
if idx == 0:
self.samples = np.load(sampleFile)
self.labels = np.load(self.labelFileList[idx])
else:
self.samples = np.concatenate((self.samples, np.load(sampleFile)), axis=0)
self.labels = np.concatenate((self.labels, np.load(self.labelFileList[idx])), axis=0)
### total number of samples
self.length = int(self.samples.shape[0] * self.sampleRatio) // 2 * reuselFactor
print(f"[{self.datasetName} dataset] \t Total number of samples: {self.length}")
def __getitem__(self, index):
sample = np.zeros((8, 8), dtype=np.float32)
idx1 = np.random.randint(0, self.samples.shape[0])
idx2 = np.random.randint(0, self.samples.shape[0])
photon1 = self.samples[idx1]
photon2 = self.samples[idx2]
### random position for photons in
pos_x1 = np.random.randint(1, 4)
pos_y1 = np.random.randint(1, 4)
sample[pos_y1:pos_y1+5, pos_x1:pos_x1+5] += photon1
pos_x2 = np.random.randint(1, 4)
pos_y2 = np.random.randint(1, 4)
sample[pos_y2:pos_y2+5, pos_x2:pos_x2+5] += photon2
sample = sample[1:-1, 1:-1] ### sample size: 6x6
sample = torch.tensor(sample, dtype=torch.float32).unsqueeze(0) / 1000. ### to keV
label1 = self.labels[idx1] + np.array([pos_x1, pos_y1, 0, 0]) - 1
label2 = self.labels[idx2] + np.array([pos_x2, pos_y2, 0, 0]) - 1
# label = np.concatenate((label1, label2), axis=0)
if label1[0] < label2[0]:
label = np.concatenate((label1, label2), axis=0)
else:
label = np.concatenate((label2, label1), axis=0)
return sample, torch.tensor(label, dtype=torch.float32)
def __len__(self):
return self.length

190
src/models.py Normal file
View File

@@ -0,0 +1,190 @@
import torch.nn as nn
import torch.nn.functional as F
import torch
import numpy as np
class singlePhotonNet_250909(nn.Module):
def weight_init(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def __init__(self):
super(singlePhotonNet_250909, self).__init__()
self.conv1 = nn.Conv2d(1, 5, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(5, 10, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(10, 20, kernel_size=3, padding=1)
self.fc = nn.Linear(20*5*5, 2)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class doublePhotonNet_250909(nn.Module):
def __init__(self):
super(doublePhotonNet_250909, self).__init__()
self.conv1 = nn.Conv2d(1, 3, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(3, 5, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(5, 5, kernel_size=3, padding=1)
self.fc1 = nn.Linear(5*6*6, 4)
# self.fc2 = nn.Linear(50, 4)
# 初始化更稳一些
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(x.size(0), -1)
# x = F.relu(self.fc1(x))
# x = self.fc2(x)
x = self.fc1(x)
return x
class doublePhotonNet_250910(nn.Module):
def __init__(self):
super(doublePhotonNet_250910, self).__init__()
### x shape: (B, 1, 6, 6)
self.conv1 = nn.Conv2d(1, 5, kernel_size=5, padding=2) # (B,5,6,6)
self.conv2 = nn.Conv2d(5, 10, kernel_size=5, padding=2) # (B,10,6,6)
self.conv3 = nn.Conv2d(10, 20, kernel_size=3, padding=0) # (B,20,4,4)
self.fc1 = nn.Linear(20*4*4, 4)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = x.view(x.size(0), -1)
# x = F.relu(self.fc1(x))
# x = self.fc2(x)
x = self.fc1(x) * 6
return x
class doublePhotonNet_251001(nn.Module):
def __init__(self):
super().__init__()
# 保持空间分辨率:使用小卷积核 + 无池化
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1) # 6x6 -> 6x6
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1) # 6x6 -> 6x6
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1) # 6x6 -> 6x6
# 全局特征提取(替代全连接层)
self.global_avg_pool = nn.AdaptiveAvgPool2d((1,1)) # 64x1x1
self.global_max_pool = nn.AdaptiveMaxPool2d((1,1)) # 64x1x1
# 回归头输出4个坐标 (x1,y1,x2,y2)
self.fc = nn.Sequential(
nn.Linear(64, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 4), # 直接输出坐标
# nn.Sigmoid() # sigmoid leads to overfitting
)
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
# if isinstance(m, nn.Linear):
# nn.init.xavier_uniform_(m.weight)
# nn.init.zeros_(m.bias)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = torch.relu(self.conv3(x))
# x = self.global_avg_pool(x).view(x.size(0), -1)
x = self.global_max_pool(x).view(x.size(0), -1)
coords = self.fc(x)*6
return coords # shape: [B, 4]
import torch
import torch.nn as nn
import torch.nn.functional as F
class doublePhotonNet_251001_2(nn.Module):
def __init__(self):
super().__init__()
# Backbone: deeper + residual-like blocks
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
# Spatial Attention Module (轻量但有效)
self.spatial_attn = nn.Sequential(
nn.Conv2d(128, 1, kernel_size=1),
nn.Sigmoid()
)
# Multi-scale feature fusion (optional but helpful)
self.reduce1 = nn.Conv2d(32, 32, kernel_size=1) # from conv1
self.reduce2 = nn.Conv2d(64, 32, kernel_size=1) # from conv2
self.fuse = nn.Conv2d(32*3, 128, kernel_size=1)
# Global context with both Max and Avg pooling (better than GAP alone)
self.global_max_pool = nn.AdaptiveMaxPool2d((1,1))
self.global_avg_pool = nn.AdaptiveAvgPool2d((1,1))
# Enhanced regression head
self.fc = nn.Sequential(
nn.Linear(128 * 2, 256), # concat max + avg
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 4),
nn.Sigmoid() # output in [0,1]
)
self._init_weights()
def _init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x):
# Feature extraction
c1 = F.relu(self.conv1(x)) # [B, 32, 6, 6]
c2 = F.relu(self.conv2(c1)) # [B, 64, 6, 6]
c3 = F.relu(self.conv3(c2)) # [B,128, 6, 6]
# Spatial attention: highlight photon peaks
attn = self.spatial_attn(c3) # [B, 1, 6, 6]
c3 = c3 * attn # reweight features
# (Optional) Multi-scale fusion — uncomment if needed
# r1 = F.interpolate(self.reduce1(c1), size=(6,6), mode='nearest')
# r2 = self.reduce2(c2)
# fused = torch.cat([r1, r2, c3], dim=1)
# c3 = self.fuse(fused)
# Global context: MaxPool better captures peaks, Avg for context
g_max = self.global_max_pool(c3).flatten(1) # [B, 128]
g_avg = self.global_avg_pool(c3).flatten(1) # [B, 128]
global_feat = torch.cat([g_max, g_avg], dim=1) # [B, 256]
# Regression
coords = self.fc(global_feat) * 6.0 # scale to [0,6)
return coords # [B, 4]