Add physical coords into dataset
This commit is contained in:
@@ -7,6 +7,7 @@ class singlePhotonDataset(Dataset):
|
||||
self.sampleFileList = sampleList
|
||||
self.sampleRatio = sampleRatio
|
||||
self.datasetName = datasetName
|
||||
self._init_coords()
|
||||
|
||||
all_samples = []
|
||||
all_labels = []
|
||||
@@ -43,21 +44,34 @@ class singlePhotonDataset(Dataset):
|
||||
print(f'Adding Gaussian noise with sigma = {noiseKeV} keV to samples in {self.datasetName} dataset')
|
||||
noise = np.random.normal(loc=0.0, scale=noiseKeV, size=self.samples.shape)
|
||||
self.samples = self.samples + noise
|
||||
self.labels = np.concatenate(all_labels, axis=0)
|
||||
self.labels = torch.tensor(np.concatenate(all_labels, axis=0))
|
||||
self.referencePoint = np.concatenate(all_ref_pts, axis=0) if all_ref_pts else None
|
||||
|
||||
if self.samples.shape[1] == 5: ### if sample size is 5x5, remove border pixels to make it 3x3
|
||||
self.samples = self.samples[:, 1:-1, 1:-1] ### remove border pixels
|
||||
self.labels = self.labels - np.array([1, 1, 0, 0]) ### adjust labels accordingly
|
||||
self.labels = self.labels - torch.tensor([1, 1, 0, 0]) ### adjust labels accordingly
|
||||
self.samples = torch.tensor(self.samples).unsqueeze(1).float()
|
||||
x_grids = self.x_grid.expand(self.samples.size(0), 1, -1, -1)
|
||||
y_grids = self.y_grid.expand(self.samples.size(0), 1, -1, -1)
|
||||
self.samples = torch.cat([self.samples, x_grids, y_grids], dim=1) ### concatenate coordinate channels
|
||||
self.labels -= torch.tensor([self.samples.shape[1]/2., self.samples.shape[1]/2., 0, 0]) ### adjust labels to be centered at (0,0)
|
||||
self.labels[:, 2] /= 650. ### normalize z coordinate (depth) to [0, 1]
|
||||
### total number of samples
|
||||
self.length = int(self.samples.shape[0] * self.sampleRatio)
|
||||
print(f"[{self.datasetName} dataset] \t Total number of samples: {self.length}")
|
||||
|
||||
def _init_coords(self):
|
||||
# Create a coordinate grid for 3x3 input
|
||||
x = torch.linspace(-0.5, 0.5, 3)
|
||||
y = torch.linspace(-0.5, 0.5, 3)
|
||||
x_grid, y_grid = torch.meshgrid(x, y, indexing='ij') # (3,3), (3,3)
|
||||
self.x_grid = x_grid.unsqueeze(0) # (1, 3, 3)
|
||||
self.y_grid = y_grid.unsqueeze(0) # (1, 3, 3)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.samples[index]
|
||||
sample = np.expand_dims(sample, axis=0)
|
||||
label = self.labels[index]
|
||||
return torch.tensor(sample, dtype=torch.float32), torch.tensor(label, dtype=torch.float32)
|
||||
return sample, label
|
||||
|
||||
def __len__(self):
|
||||
return self.length
|
||||
|
||||
Reference in New Issue
Block a user