Files
musrfit/src/external/libFitPofB/include/TBofZCalc.h

236 lines
8.1 KiB
C++

/***************************************************************************
TBofZCalc.h
Author: Bastian M. Wojek
e-mail: bastian.wojek@psi.ch
2009/04/25
***************************************************************************/
/***************************************************************************
* Copyright (C) 2009 by Bastian M. Wojek *
* *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _TBofZCalc_H_
#define _TBofZCalc_H_
#include <vector>
using namespace std;
/**
* <p>Base class for any kind of theory function B(z)
*/
class TBofZCalc {
public:
TBofZCalc() {}
virtual ~TBofZCalc() {
fZ.clear();
fBZ.clear();
fParam.clear();
}
virtual vector<double>* DataZ() const {return &fZ;}
virtual vector<double>* DataBZ() const {return &fBZ;}
virtual void Calculate();
virtual double GetBofZ(double) const = 0;
virtual double GetBmin() const = 0;
virtual double GetBmax() const = 0;
double GetDZ() const {return fDZ;}
protected:
int fSteps; ///< number of discrete points where B(z) is calculated
double fDZ; ///< resolution in z (spacing between two neighboring discrete B(z) points)
vector<double> fParam; ///< parameters of the B(z) function
mutable vector<double> fZ; ///< vector holding all z-values
mutable vector<double> fBZ; ///< vector holding all B(z)-values
};
/**
* <p>Base class for any kind of theory function B(z) where the inverse and its derivative are given analytically
*/
class TBofZCalcInverse : public TBofZCalc {
public:
TBofZCalcInverse() {}
virtual ~TBofZCalcInverse() {}
virtual vector< pair<double, double> > GetInverseAndDerivative(double) const = 0;
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a superconducting half-space
*/
class TLondon1D_HS : public TBofZCalcInverse {
public:
TLondon1D_HS(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a thin superconducting film
*/
class TLondon1D_1L : public TBofZCalcInverse {
public:
TLondon1D_1L(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
private:
void SetBmin();
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fCoeff[2]; ///< array holding the results of two intermediate steps of the involved calculations
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a thin superconducting film
* consisting of two layers with different magnetic penetration depths
*/
class TLondon1D_2L : public TBofZCalcInverse {
public:
TLondon1D_2L(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
private:
void SetBmin();
int fMinTag; ///< tag specifying which layer contains the minimum value of B(z)
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fInterfaces[3]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes
double fCoeff[4]; ///< array holding the results of four intermediate steps of the involved calculations
};
/**
* <p>Class calculating the Meissner screening in a conventionally proximated system
* consisting of one metal layer and an underlying (London) superconducting half-space
*/
class TProximity1D_1LHS : public TBofZCalcInverse {
public:
TProximity1D_1LHS(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
private:
void SetBmin();
int fMinTag; ///< tag specifying which layer contains the minimum value of B(z)
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fInterfaces[2]; ///< positions of the interfaces between a dead layer, the metallic region and the superconducting region
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a thin superconducting film
* consisting of three layers with different magnetic penetration depths
*/
class TLondon1D_3L : public TBofZCalcInverse {
public:
TLondon1D_3L(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
private:
void SetBmin();
int fMinTag; ///< tag specifying which layer contains the minimum value of B(z)
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fInterfaces[4]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes
double fCoeff[6]; ///< array holding the results of six intermediate steps of the involved calculations
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a thin superconducting film
* consisting of three layers with different magnetic penetration depths (where lambda is the same for the two outer layers)
*/
class TLondon1D_3LS : public TBofZCalcInverse {
public:
TLondon1D_3LS(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
vector< pair<double, double> > GetInverseAndDerivative(double) const;
private:
void SetBmin();
int fMinTag; ///< tag specifying which layer contains the minimum value of B(z)
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fInterfaces[4]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes
double fCoeff[6]; ///< array holding the results of six intermediate steps of the involved calculations
};
/**
* <p>Class using the 1D London model to calculate Meissner screening in a thin superconducting film
* consisting of three layers with two different magnetic penetration depths and the central layer being insulating
*/
class TLondon1D_3LwInsulator : public TBofZCalc {
public:
TLondon1D_3LwInsulator(const vector<double>&, unsigned int steps = 3000);
double GetBofZ(double) const;
double GetBmin() const;
double GetBmax() const;
private:
void SetBmin();
double fMinZ; ///< position of the minimum of B(z)
double fMinB; ///< miniumum value of B(z)
double fCoeff[4]; ///< array holding the results of four intermediate steps of the involved calculations
};
#endif // _BofZCalc_H_