/*************************************************************************** TBofZCalc.h Author: Bastian M. Wojek e-mail: bastian.wojek@psi.ch 2009/04/25 ***************************************************************************/ /*************************************************************************** * Copyright (C) 2009 by Bastian M. Wojek * * * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifndef _TBofZCalc_H_ #define _TBofZCalc_H_ #include using namespace std; /** *

Base class for any kind of theory function B(z) */ class TBofZCalc { public: TBofZCalc() {} virtual ~TBofZCalc() { fZ.clear(); fBZ.clear(); fParam.clear(); } virtual vector* DataZ() const {return &fZ;} virtual vector* DataBZ() const {return &fBZ;} virtual void Calculate(); virtual double GetBofZ(double) const = 0; virtual double GetBmin() const = 0; virtual double GetBmax() const = 0; double GetDZ() const {return fDZ;} protected: int fSteps; ///< number of discrete points where B(z) is calculated double fDZ; ///< resolution in z (spacing between two neighboring discrete B(z) points) vector fParam; ///< parameters of the B(z) function mutable vector fZ; ///< vector holding all z-values mutable vector fBZ; ///< vector holding all B(z)-values }; /** *

Base class for any kind of theory function B(z) where the inverse and its derivative are given analytically */ class TBofZCalcInverse : public TBofZCalc { public: TBofZCalcInverse() {} virtual ~TBofZCalcInverse() {} virtual vector< pair > GetInverseAndDerivative(double) const = 0; }; /** *

Class using the 1D London model to calculate Meissner screening in a superconducting half-space */ class TLondon1D_HS : public TBofZCalcInverse { public: TLondon1D_HS(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; }; /** *

Class using the 1D London model to calculate Meissner screening in a thin superconducting film */ class TLondon1D_1L : public TBofZCalcInverse { public: TLondon1D_1L(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; private: void SetBmin(); double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fCoeff[2]; ///< array holding the results of two intermediate steps of the involved calculations }; /** *

Class using the 1D London model to calculate Meissner screening in a thin superconducting film * consisting of two layers with different magnetic penetration depths */ class TLondon1D_2L : public TBofZCalcInverse { public: TLondon1D_2L(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; private: void SetBmin(); int fMinTag; ///< tag specifying which layer contains the minimum value of B(z) double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fInterfaces[3]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes double fCoeff[4]; ///< array holding the results of four intermediate steps of the involved calculations }; /** *

Class calculating the Meissner screening in a conventionally proximated system * consisting of one metal layer and an underlying (London) superconducting half-space */ class TProximity1D_1LHS : public TBofZCalcInverse { public: TProximity1D_1LHS(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; private: void SetBmin(); int fMinTag; ///< tag specifying which layer contains the minimum value of B(z) double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fInterfaces[2]; ///< positions of the interfaces between a dead layer, the metallic region and the superconducting region }; /** *

Class using the 1D London model to calculate Meissner screening in a thin superconducting film * consisting of three layers with different magnetic penetration depths */ class TLondon1D_3L : public TBofZCalcInverse { public: TLondon1D_3L(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; private: void SetBmin(); int fMinTag; ///< tag specifying which layer contains the minimum value of B(z) double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fInterfaces[4]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes double fCoeff[6]; ///< array holding the results of six intermediate steps of the involved calculations }; /** *

Class using the 1D London model to calculate Meissner screening in a thin superconducting film * consisting of three layers with different magnetic penetration depths (where lambda is the same for the two outer layers) */ class TLondon1D_3LS : public TBofZCalcInverse { public: TLondon1D_3LS(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; vector< pair > GetInverseAndDerivative(double) const; private: void SetBmin(); int fMinTag; ///< tag specifying which layer contains the minimum value of B(z) double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fInterfaces[4]; ///< positions of the interfaces between monotonous parts of B(z) or where the function changes double fCoeff[6]; ///< array holding the results of six intermediate steps of the involved calculations }; /** *

Class using the 1D London model to calculate Meissner screening in a thin superconducting film * consisting of three layers with two different magnetic penetration depths and the central layer being insulating */ class TLondon1D_3LwInsulator : public TBofZCalc { public: TLondon1D_3LwInsulator(const vector&, unsigned int steps = 3000); double GetBofZ(double) const; double GetBmin() const; double GetBmax() const; private: void SetBmin(); double fMinZ; ///< position of the minimum of B(z) double fMinB; ///< miniumum value of B(z) double fCoeff[4]; ///< array holding the results of four intermediate steps of the involved calculations }; #endif // _BofZCalc_H_