musrfit/src/classes/PRunSingleHistoRRF.cpp
Andreas Suter 7b6180a688 Functions can now not only operate on parameters and maps but also on meta information
obtained from the data files. Currently the following meta information can be accessed
if available:
field in (G): B or b
energy in (keV): En or en
temperature in (K): since some data files contain a vector of temperature, they have
                    to be accessed with an index, like T0 or t0, etc.
2020-06-17 19:31:31 +02:00

1225 lines
48 KiB
C++

/***************************************************************************
PRunSingleHistoRRF.cpp
Author: Andreas Suter
e-mail: andreas.suter@psi.ch
***************************************************************************/
/***************************************************************************
* Copyright (C) 2007-2020 by Andreas Suter *
* andreas.suter@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_GOMP
#include <omp.h>
#endif
#include <cmath>
#include <iostream>
#include <fstream>
#include <TString.h>
#include <TObjArray.h>
#include <TObjString.h>
#include <TH1F.h>
#include "PMusr.h"
#include "PFourier.h"
#include "PRunSingleHistoRRF.h"
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>Constructor
*/
PRunSingleHistoRRF::PRunSingleHistoRRF() : PRunBase()
{
fNoOfFitBins = 0;
fBackground = 0.0;
fBkgErr = 1.0;
fRRFPacking = -1;
// the 2 following variables are need in case fit range is given in bins, and since
// the fit range can be changed in the command block, these variables need to be accessible
fGoodBins[0] = -1;
fGoodBins[1] = -1;
fN0EstimateEndTime = 1.0; // end time in (us) over which N0 is estimated.
}
//--------------------------------------------------------------------------
// Constructor
//--------------------------------------------------------------------------
/**
* <p>Constructor
*
* \param msrInfo pointer to the msr-file handler
* \param rawData raw run data
* \param runNo number of the run within the msr-file
* \param tag tag showing what shall be done: kFit == fitting, kView == viewing
*/
PRunSingleHistoRRF::PRunSingleHistoRRF(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag) : PRunBase(msrInfo, rawData, runNo, tag)
{
fNoOfFitBins = 0;
PMsrGlobalBlock *global = msrInfo->GetMsrGlobal();
if (!global->IsPresent()) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no GLOBAL-block present!";
std::cerr << std::endl << ">> For Single Histo RRF the GLOBAL-block is mandatory! Please fix this first.";
std::cerr << std::endl;
fValid = false;
return;
}
if (!global->GetRRFUnit().CompareTo("??")) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no RRF-Frequency found!";
std::cerr << std::endl;
fValid = false;
return;
}
fRRFPacking = global->GetRRFPacking();
if (fRRFPacking == -1) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no RRF-Packing found!";
std::cerr << std::endl;
fValid = false;
return;
}
// the 2 following variables are need in case fit range is given in bins, and since
// the fit range can be changed in the command block, these variables need to be accessible
fGoodBins[0] = -1;
fGoodBins[1] = -1;
fN0EstimateEndTime = 1.0; // end time in (us) over which N0 is estimated.
if (!PrepareData()) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: Couldn't prepare data for fitting!";
std::cerr << std::endl << ">> This is very bad :-(, will quit ...";
std::cerr << std::endl;
fValid = false;
}
}
//--------------------------------------------------------------------------
// Destructor
//--------------------------------------------------------------------------
/**
* <p>Destructor
*/
PRunSingleHistoRRF::~PRunSingleHistoRRF()
{
fForward.clear();
}
//--------------------------------------------------------------------------
// CalcChiSquare (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate chi-square.
*
* <b>return:</b>
* - chisq value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunSingleHistoRRF::CalcChiSquare(const std::vector<Double_t>& par)
{
Double_t chisq = 0.0;
Double_t diff = 0.0;
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
UInt_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData);
}
// calculate chi square
Double_t time(1.0);
Int_t i;
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
#endif
for (i=fStartTimeBin; i<fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + static_cast<Double_t>(i)*fData.GetDataTimeStep();
diff = fData.GetValue()->at(i) - fTheory->Func(time, par, fFuncValues);
chisq += diff*diff / (fData.GetError()->at(i)*fData.GetError()->at(i));
}
return chisq;
}
//--------------------------------------------------------------------------
// CalcChiSquareExpected (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate expected chi-square.
*
* <b>return:</b>
* - chisq value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunSingleHistoRRF::CalcChiSquareExpected(const std::vector<Double_t>& par)
{
Double_t chisq = 0.0;
Double_t diff = 0.0;
Double_t theo = 0.0;
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
UInt_t funcNo = fMsrInfo->GetFuncNo(i);
fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData);
}
// calculate chi square
Double_t time(1.0);
Int_t i;
// Calculate the theory function once to ensure one function evaluation for the current set of parameters.
// This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once
// for a given set of parameters---which should be done outside of the parallelized loop.
// For all other functions it means a tiny and acceptable overhead.
time = fTheory->Func(time, par, fFuncValues);
#ifdef HAVE_GOMP
Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs();
if (chunk < 10)
chunk = 10;
#pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq)
#endif
for (i=fStartTimeBin; i < fEndTimeBin; ++i) {
time = fData.GetDataTimeStart() + static_cast<Double_t>(i)*fData.GetDataTimeStep();
theo = fTheory->Func(time, par, fFuncValues);
diff = fData.GetValue()->at(i) - theo;
chisq += diff*diff / theo;
}
return chisq;
}
//--------------------------------------------------------------------------
// CalcMaxLikelihood (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate log maximum-likelihood. See http://pdg.lbl.gov/index.html
*
* <b>return:</b>
* - log maximum-likelihood value
*
* \param par parameter vector iterated by minuit2
*/
Double_t PRunSingleHistoRRF::CalcMaxLikelihood(const std::vector<Double_t>& par)
{
// not yet implemented
return 0.0;
}
//--------------------------------------------------------------------------
// CalcTheory (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate theory for a given set of fit-parameters.
*/
void PRunSingleHistoRRF::CalcTheory()
{
// feed the parameter vector
std::vector<Double_t> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (UInt_t i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData);
}
// calculate theory
UInt_t size = fData.GetValue()->size();
Double_t start = fData.GetDataTimeStart();
Double_t resolution = fData.GetDataTimeStep();
Double_t time;
for (UInt_t i=0; i<size; i++) {
time = start + static_cast<Double_t>(i)*resolution;
fData.AppendTheoryValue(fTheory->Func(time, par, fFuncValues));
}
// clean up
par.clear();
}
//--------------------------------------------------------------------------
// GetNoOfFitBins (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate the number of fitted bins for the current fit range.
*
* <b>return:</b> number of fitted bins.
*/
UInt_t PRunSingleHistoRRF::GetNoOfFitBins()
{
CalcNoOfFitBins();
return fNoOfFitBins;
}
//--------------------------------------------------------------------------
// SetFitRangeBin (public)
//--------------------------------------------------------------------------
/**
* <p>Allows to change the fit range on the fly. Used in the COMMAND block.
* The syntax of the string is: FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]].
* If only one pair of fgb/lgb is given, it is used for all runs in the RUN block section.
* If multiple fgb/lgb's are given, the number N has to be the number of RUN blocks in
* the msr-file.
*
* <p>nXY are offsets which can be used to shift, limit the fit range.
*
* \param fitRange string containing the necessary information.
*/
void PRunSingleHistoRRF::SetFitRangeBin(const TString fitRange)
{
TObjArray *tok = nullptr;
TObjString *ostr = nullptr;
TString str;
Ssiz_t idx = -1;
Int_t offset = 0;
tok = fitRange.Tokenize(" \t");
if (tok->GetEntries() == 3) { // structure FIT_RANGE fgb+n0 lgb-n1
// handle fgb+n0 entry
ostr = dynamic_cast<TObjString*>(tok->At(1));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("+");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution;
// handle lgb-n1 entry
ostr = dynamic_cast<TObjString*>(tok->At(2));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("-");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution;
} else if ((tok->GetEntries() > 3) && (tok->GetEntries() % 2 == 1)) { // structure FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]]
Int_t pos = 2*(fRunNo+1)-1;
if (pos + 1 >= tok->GetEntries()) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'";
std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl;
} else {
// handle fgb+n0 entry
ostr = dynamic_cast<TObjString*>(tok->At(pos));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("+");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution;
// handle lgb-n1 entry
ostr = dynamic_cast<TObjString*>(tok->At(pos+1));
str = ostr->GetString();
// check if there is an offset present
idx = str.First("-");
if (idx != -1) { // offset present
str.Remove(0, idx+1);
if (str.IsFloat()) // if str is a valid number, convert is to an integer
offset = str.Atoi();
}
fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution;
}
} else { // error
std::cerr << std::endl << ">> PRunSingleHistoRRF::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'";
std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl;
}
// clean up
if (tok) {
delete tok;
}
}
//--------------------------------------------------------------------------
// CalcNoOfFitBins (public)
//--------------------------------------------------------------------------
/**
* <p>Calculate the number of fitted bins for the current fit range.
*/
void PRunSingleHistoRRF::CalcNoOfFitBins()
{
// In order not having to loop over all bins and to stay consistent with the chisq method, calculate the start and end bins explicitly
fStartTimeBin = static_cast<Int_t>(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep()));
if (fStartTimeBin < 0)
fStartTimeBin = 0;
fEndTimeBin = static_cast<Int_t>(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1;
if (fEndTimeBin > static_cast<Int_t>(fData.GetValue()->size()))
fEndTimeBin = fData.GetValue()->size();
if (fEndTimeBin > fStartTimeBin)
fNoOfFitBins = fEndTimeBin - fStartTimeBin;
else
fNoOfFitBins = 0;
}
//--------------------------------------------------------------------------
// PrepareData (protected)
//--------------------------------------------------------------------------
/**
* <p>Prepare data for fitting or viewing. What is already processed at this stage:
* -# get proper raw run data
* -# get all needed forward histograms
* -# get time resolution
* -# get t0's and perform necessary cross checks (e.g. if t0 of msr-file (if present) are consistent with t0 of the data files, etc.)
* -# add runs (if addruns are present)
* -# group histograms (if grouping is present)
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunSingleHistoRRF::PrepareData()
{
Bool_t success = true;
// keep the Global block info
PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal();
// get the proper run
PRawRunData* runData = fRawData->GetRunData(*fRunInfo->GetRunName());
if (!runData) { // couldn't get run
std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **ERROR** Couldn't get run " << fRunInfo->GetRunName()->Data() << "!";
std::cerr << std::endl;
return false;
}
// keep the field from the meta-data from the data-file
fMetaData.fField = runData->GetField();
// keep the energy from the meta-data from the data-file
fMetaData.fEnergy = runData->GetEnergy();
// keep the temperature(s) from the meta-data from the data-file
for (unsigned int i=0; i<runData->GetNoOfTemperatures(); i++)
fMetaData.fTemp.push_back(runData->GetTemperature(i));
// collect histogram numbers
PUIntVector histoNo; // histoNo = msr-file forward + redGreen_offset - 1
for (UInt_t i=0; i<fRunInfo->GetForwardHistoNoSize(); i++) {
histoNo.push_back(fRunInfo->GetForwardHistoNo(i));
if (!runData->IsPresent(histoNo[i])) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **PANIC ERROR**:";
std::cerr << std::endl << ">> histoNo found = " << histoNo[i] << ", which is NOT present in the data file!?!?";
std::cerr << std::endl << ">> Will quit :-(";
std::cerr << std::endl;
histoNo.clear();
return false;
}
}
// keep the time resolution in (us)
fTimeResolution = runData->GetTimeResolution()/1.0e3;
std::cout.precision(10);
std::cout << std::endl << ">> PRunSingleHisto::PrepareData(): time resolution=" << std::fixed << runData->GetTimeResolution() << "(ns)" << std::endl;
// get all the proper t0's and addt0's for the current RUN block
if (!GetProperT0(runData, globalBlock, histoNo)) {
return false;
}
// keep the histo of each group at this point (addruns handled below)
std::vector<PDoubleVector> forward;
forward.resize(histoNo.size()); // resize to number of groups
for (UInt_t i=0; i<histoNo.size(); i++) {
forward[i].resize(runData->GetDataBin(histoNo[i])->size());
forward[i] = *runData->GetDataBin(histoNo[i]);
}
// check if there are runs to be added to the current one
if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present
PRawRunData *addRunData;
for (UInt_t i=1; i<fRunInfo->GetRunNameSize(); i++) {
// get run to be added to the main one
addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i));
if (addRunData == nullptr) { // couldn't get run
std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!";
std::cerr << std::endl;
return false;
}
// add forward run
UInt_t addRunSize;
for (UInt_t k=0; k<histoNo.size(); k++) { // fill each group
addRunSize = addRunData->GetDataBin(histoNo[k])->size();
for (UInt_t j=0; j<addRunData->GetDataBin(histoNo[k])->size(); j++) { // loop over the bin indices
// make sure that the index stays in the proper range
if ((static_cast<Int_t>(j)+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]) >= 0) &&
(j+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]) < addRunSize)) {
forward[k][j] += addRunData->GetDataBin(histoNo[k])->at(j+static_cast<Int_t>(fAddT0s[i-1][k])-static_cast<Int_t>(fT0s[k]));
}
}
}
}
}
// set forward histo data of the first group
fForward.resize(forward[0].size());
for (UInt_t i=0; i<fForward.size(); i++) {
fForward[i] = forward[0][i];
}
// group histograms, add all the remaining forward histograms of the group
for (UInt_t i=1; i<histoNo.size(); i++) { // loop over the groupings
for (UInt_t j=0; j<runData->GetDataBin(histoNo[i])->size(); j++) { // loop over the bin indices
// make sure that the index stays within proper range
if ((static_cast<Int_t>(j)+static_cast<Int_t>(fT0s[i])-static_cast<Int_t>(fT0s[0]) >= 0) &&
(j+static_cast<Int_t>(fT0s[i])-static_cast<Int_t>(fT0s[0]) < runData->GetDataBin(histoNo[i])->size())) {
fForward[j] += forward[i][j+static_cast<Int_t>(fT0s[i])-static_cast<Int_t>(fT0s[0])];
}
}
}
// get the data range (fgb/lgb) for the current RUN block
if (!GetProperDataRange()) {
return false;
}
// get the fit range for the current RUN block
GetProperFitRange(globalBlock);
// do the more fit/view specific stuff
if (fHandleTag == kFit)
success = PrepareFitData(runData, histoNo[0]);
else if (fHandleTag == kView)
success = PrepareViewData(runData, histoNo[0]);
else
success = false;
// cleanup
histoNo.clear();
return success;
}
//--------------------------------------------------------------------------
// PrepareFitData (protected)
//--------------------------------------------------------------------------
/**
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the RRF histogram for fitting.
* The following steps are preformed:
* -# get fit start/stop time
* -# check that 'first good data bin', 'last good data bin', and 't0' make any sense
* -# check how the background shall be handled, i.e. fitted, subtracted from background estimate data range, or subtacted from a given fixed background.
* -# estimate N0
* -# RRF transformation
* -# packing (i.e rebinning)
*
* <b>return:</b>
* - true, if everything went smooth
* - false, otherwise
*
* \param runData raw run data handler
* \param histoNo forward histogram number
*/
Bool_t PRunSingleHistoRRF::PrepareFitData(PRawRunData* runData, const UInt_t histoNo)
{
// keep the raw data for the RRF asymmetry error estimate for later
PDoubleVector rawNt;
for (UInt_t i=0; i<fForward.size(); i++) {
rawNt.push_back(fForward[i]); // N(t) without any corrections
}
Double_t freqMax = GetMainFrequency(rawNt);
std::cout << "info> freqMax=" << freqMax << " (MHz)" << std::endl;
// "optimal packing"
Double_t optNoPoints = 8;
if (freqMax < 271.0) // < 271 MHz, i.e ~ 2T
optNoPoints = 5;
std::cout << "info> optimal packing: " << static_cast<Int_t>(1.0 / (fTimeResolution*(freqMax - fMsrInfo->GetMsrGlobal()->GetRRFFreq("MHz"))) / optNoPoints);
// initially fForward is the "raw data set" (i.e. grouped histo and raw runs already added) to be fitted. This means fForward = N(t) at this point.
// 1) check how the background shall be handled
// subtract background from histogramms ------------------------------------------
if (fRunInfo->GetBkgFix(0) == PMUSR_UNDEFINED) { // no fixed background given
if (fRunInfo->GetBkgRange(0) >= 0) {
if (!EstimateBkg(histoNo))
return false;
} else { // no background given to do the job, try estimate
fRunInfo->SetBkgRange(static_cast<Int_t>(fT0s[0]*0.1), 0);
fRunInfo->SetBkgRange(static_cast<Int_t>(fT0s[0]*0.6), 1);
std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareFitData(): **WARNING** Neither fix background nor background bins are given!";
std::cerr << std::endl << ">> Will try the following: bkg start = " << fRunInfo->GetBkgRange(0) << ", bkg end = " << fRunInfo->GetBkgRange(1);
std::cerr << std::endl << ">> NO WARRANTY THAT THIS MAKES ANY SENSE! Better check ...";
std::cerr << std::endl;
if (!EstimateBkg(histoNo))
return false;
}
// subtract background from fForward
for (UInt_t i=0; i<fForward.size(); i++)
fForward[i] -= fBackground;
} else { // fixed background given
for (UInt_t i=0; i<fForward.size(); i++) {
fForward[i] -= fRunInfo->GetBkgFix(0);
}
fBackground = fRunInfo->GetBkgFix(0);
}
// here fForward = N(t) - Nbkg
Int_t t0 = static_cast<Int_t>(fT0s[0]);
// 2) N(t) - Nbkg -> exp(+t/tau) [N(t)-Nbkg]
Double_t startTime = fTimeResolution * (static_cast<Double_t>(fGoodBins[0]) - static_cast<Double_t>(t0));
Double_t time_tau=0.0;
Double_t exp_t_tau=0.0;
for (Int_t i=fGoodBins[0]; i<fGoodBins[1]; i++) {
time_tau = (startTime + fTimeResolution * (i - fGoodBins[0])) / PMUON_LIFETIME;
exp_t_tau = exp(time_tau);
fForward[i] *= exp_t_tau;
fM.push_back(fForward[i]); // i.e. M(t) = [N(t)-Nbkg] exp(+t/tau); needed to estimate N0 later on
fMerr.push_back(exp_t_tau*sqrt(rawNt[i]+fBkgErr*fBkgErr));
}
// calculate weights
for (UInt_t i=0; i<fMerr.size(); i++) {
if (fMerr[i] > 0.0)
fW.push_back(1.0/(fMerr[i]*fMerr[i]));
else
fW.push_back(1.0);
}
// now fForward = exp(+t/tau) [N(t)-Nbkg] = M(t)
// 3) estimate N0
Double_t errN0 = 0.0;
Double_t n0 = EstimateN0(errN0, freqMax);
// 4a) A(t) = exp(+t/tau) [N(t)-Nbkg] / N0 - 1.0
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
fForward[i] = fForward[i] / n0 - 1.0;
}
// 4b) error estimate of A(t): errA(t) = exp(+t/tau)/N0 sqrt( N(t) + ([N(t)-N_bkg]/N0)^2 errN0^2 )
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
time_tau = (startTime + fTimeResolution * (i - fGoodBins[0])) / PMUON_LIFETIME;
exp_t_tau = exp(time_tau);
fAerr.push_back(exp_t_tau/n0*sqrt(rawNt[i]+pow(((rawNt[i]-fBackground)/n0)*errN0,2.0)));
}
// 5) rotate A(t): A(t) -> 2* A(t) * cos(wRRF t + phiRRF), the factor 2.0 is needed since the high frequency part is suppressed.
PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal();
Double_t wRRF = globalBlock->GetRRFFreq("Mc");
Double_t phaseRRF = globalBlock->GetRRFPhase()*TMath::TwoPi()/180.0;
Double_t time = 0.0;
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
time = startTime + fTimeResolution * (static_cast<Double_t>(i) - static_cast<Double_t>(fGoodBins[0]));
fForward[i] *= 2.0*cos(wRRF * time + phaseRRF);
}
// 6) RRF packing
Double_t dval=0.0;
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
if (fRRFPacking == 1) {
fData.AppendValue(fForward[i]);
} else { // RRF packing > 1
if (((i-fGoodBins[0]) % fRRFPacking == 0) && (i != fGoodBins[0])) { // fill data
dval /= fRRFPacking;
fData.AppendValue(dval);
// reset dval
dval = 0.0;
}
dval += fForward[i];
}
}
// 7) estimate packed RRF errors (see log-book p.204)
// the error estimate of the unpacked RRF asymmetry is: errA_RRF(t) \simeq exp(t/tau)/N0 sqrt( [N(t) + ((N(t)-N_bkg)/N0)^2 errN0^2] )
dval = 0.0;
// the packed RRF asymmetry error
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
if (((i-fGoodBins[0]) % fRRFPacking == 0) && (i != fGoodBins[0])) { // fill data
fData.AppendErrorValue(sqrt(2.0*dval)/fRRFPacking); // the factor 2.0 is needed since the high frequency part is suppressed.
dval = 0.0;
}
dval += fAerr[i-fGoodBins[0]]*fAerr[i-fGoodBins[0]];
}
// set start time and time step
fData.SetDataTimeStart(fTimeResolution*(static_cast<Double_t>(fGoodBins[0])-static_cast<Double_t>(t0)+static_cast<Double_t>(fRRFPacking-1)/2.0));
fData.SetDataTimeStep(fTimeResolution*fRRFPacking);
CalcNoOfFitBins();
return true;
}
//--------------------------------------------------------------------------
// PrepareViewData (protected)
//--------------------------------------------------------------------------
/**
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for viewing
* with life time correction, i.e. the exponential decay is removed.
* <p>The following steps are preformed:
* -# check if view packing is whished.
* -# check that 'first good data bin', 'last good data bin', and 't0' makes any sense
* -# transform data sets (see below).
* -# calculate theory
*
* <b>return:</b>
* - true, if everything went smooth
* - false, otherwise
*
* \param runData raw run data handler
* \param histoNo forward histogram number
*/
Bool_t PRunSingleHistoRRF::PrepareViewData(PRawRunData* runData, const UInt_t histoNo)
{
// --------------
// prepare data
// --------------
// prepare RRF single histo
PrepareFitData(runData, histoNo);
// check for view packing
Int_t viewPacking = fMsrInfo->GetMsrPlotList()->at(0).fViewPacking;
if (viewPacking > 0) {
if (viewPacking < fRRFPacking) {
std::cerr << ">> PRunSingleHistoRRF::PrepareViewData(): **WARNING** Found View Packing (" << viewPacking << ") < RRF Packing (" << fRRFPacking << ").";
std::cerr << ">> Will ignore View Packing." << std::endl;
} else {
// STILL MISSING
}
}
// --------------
// prepare theory
// --------------
// feed the parameter vector
std::vector<Double_t> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (UInt_t i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData);
}
// check if a finer binning for the theory is needed
UInt_t size = fForward.size();
Double_t factor = 1.0;
Double_t time = 0.0;
Double_t theoryValue = 0.0;
if (fData.GetValue()->size() * 10 > fForward.size()) {
size = fData.GetValue()->size() * 10;
factor = static_cast<Double_t>(fForward.size()) / static_cast<Double_t>(size);
}
fData.SetTheoryTimeStart(fData.GetDataTimeStart());
fData.SetTheoryTimeStep(fTimeResolution*factor);
// calculate theory
for (UInt_t i=0; i<size; i++) {
time = fData.GetTheoryTimeStart() + static_cast<Double_t>(i)*fData.GetTheoryTimeStep();
theoryValue = fTheory->Func(time, par, fFuncValues);
if (fabs(theoryValue) > 10.0) { // dirty hack needs to be fixed!!
theoryValue = 0.0;
}
fData.AppendTheoryValue(theoryValue);
}
return true;
}
//--------------------------------------------------------------------------
// GetProperT0 (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper t0 for the single histogram run.
* -# the t0 vector size = number of detectors (grouping) for forward.
* -# initialize t0's with -1
* -# fill t0's from RUN block
* -# if t0's are missing (i.e. t0 == -1), try to fill from the GLOBAL block.
* -# if t0's are missing, try t0's from the data file
* -# if t0's are missing, try to estimate them
*
* \param runData pointer to the current RUN block entry from the msr-file
* \param globalBlock pointer to the GLOBLA block entry from the msr-file
* \param histoNo histogram number vector of forward; histoNo = msr-file forward + redGreen_offset - 1
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunSingleHistoRRF::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &histoNo)
{
// feed all T0's
// first init T0's, T0's are stored as (forward T0, backward T0, etc.)
fT0s.clear();
fT0s.resize(histoNo.size());
for (UInt_t i=0; i<fT0s.size(); i++) {
fT0s[i] = -1.0;
}
// fill in the T0's from the msr-file (if present)
for (UInt_t i=0; i<fRunInfo->GetT0BinSize(); i++) {
fT0s[i] = fRunInfo->GetT0Bin(i);
}
// fill in the T0's from the GLOBAL block section (if present)
for (UInt_t i=0; i<globalBlock->GetT0BinSize(); i++) {
if (fT0s[i] == -1.0) { // i.e. not given in the RUN block section
fT0s[i] = globalBlock->GetT0Bin(i);
}
}
// fill in the T0's from the data file, if not already present in the msr-file
for (UInt_t i=0; i<histoNo.size(); i++) {
if (fT0s[i] == -1.0) { // i.e. not present in the msr-file, try the data file
if (runData->GetT0Bin(histoNo[i]) > 0.0) {
fT0s[i] = runData->GetT0Bin(histoNo[i]);
fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file
}
}
}
// fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file
for (UInt_t i=0; i<histoNo.size(); i++) {
if (fT0s[i] == -1.0) { // i.e. not present in the msr-file and data file, use the estimated T0
fT0s[i] = runData->GetT0BinEstimated(histoNo[i]);
fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!";
std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName()->Data();
std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << runData->GetT0BinEstimated(histoNo[i]);
std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!";
std::cerr << std::endl;
}
}
// check if t0 is within proper bounds
for (UInt_t i=0; i<fRunInfo->GetForwardHistoNoSize(); i++) {
if ((fT0s[i] < 0.0) || (fT0s[i] > static_cast<Int_t>(runData->GetDataBin(histoNo[i])->size()))) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** t0 data bin (" << fT0s[i] << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
}
// check if there are runs to be added to the current one. If yes keep the needed t0's
if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present
PRawRunData *addRunData;
fAddT0s.resize(fRunInfo->GetRunNameSize()-1); // resize to the number of addruns
for (UInt_t i=1; i<fRunInfo->GetRunNameSize(); i++) {
// get run to be added to the main one
addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i));
if (addRunData == nullptr) { // couldn't get run
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!";
std::cerr << std::endl;
return false;
}
// feed all T0's
// first init T0's, T0's are stored as (forward T0, backward T0, etc.)
fAddT0s[i-1].resize(histoNo.size());
for (UInt_t j=0; j<fAddT0s[i-1].size(); j++) {
fAddT0s[i-1][j] = -1.0;
}
// fill in the T0's from the msr-file (if present)
for (UInt_t j=0; j<fRunInfo->GetT0BinSize(); j++) {
fAddT0s[i-1][j] = fRunInfo->GetAddT0Bin(i-1,j); // addRunIdx starts at 0
}
// fill in the T0's from the data file, if not already present in the msr-file
for (UInt_t j=0; j<histoNo.size(); j++) {
if (fAddT0s[i-1][j] == -1.0) // i.e. not present in the msr-file, try the data file
if (addRunData->GetT0Bin(histoNo[j]) > 0.0) {
fAddT0s[i-1][j] = addRunData->GetT0Bin(histoNo[j]);
fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file
}
}
// fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file
for (UInt_t j=0; j<histoNo.size(); j++) {
if (fAddT0s[i-1][j] == -1.0) { // i.e. not present in the msr-file and data file, use the estimated T0
fAddT0s[i-1][j] = addRunData->GetT0BinEstimated(histoNo[j]);
fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!";
std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName(i)->Data();
std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << addRunData->GetT0BinEstimated(histoNo[j]);
std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!";
std::cerr << std::endl;
}
}
// check if t0 is within proper bounds
for (UInt_t j=0; j<fRunInfo->GetForwardHistoNoSize(); j++) {
if ((fAddT0s[i-1][j] < 0) || (fAddT0s[i-1][j] > static_cast<Int_t>(addRunData->GetDataBin(histoNo[j])->size()))) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** addt0 data bin (" << fAddT0s[i-1][j] << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
}
}
}
return true;
}
//--------------------------------------------------------------------------
// GetProperDataRange (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper data range, i.e. first/last good bin (fgb/lgb).
* -# get fgb/lgb from the RUN block
* -# if fgb/lgb still undefined, try to get it from the GLOBAL block
* -# if fgb/lgb still undefined, try to estimate them.
*
* <b>return:</b>
* - true if everthing went smooth
* - false, otherwise.
*/
Bool_t PRunSingleHistoRRF::GetProperDataRange()
{
// get start/end data
Int_t start;
Int_t end;
start = fRunInfo->GetDataRange(0);
end = fRunInfo->GetDataRange(1);
// check if data range has been given in the RUN block, if not try to get it from the GLOBAL block
if (start < 0) {
start = fMsrInfo->GetMsrGlobal()->GetDataRange(0);
}
if (end < 0) {
end = fMsrInfo->GetMsrGlobal()->GetDataRange(1);
}
// check if data range has been provided, and if not try to estimate them
if (start < 0) {
Int_t offset = static_cast<Int_t>(10.0e-3/fTimeResolution);
start = static_cast<Int_t>(fT0s[0])+offset;
fRunInfo->SetDataRange(start, 0);
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** data range was not provided, will try data range start = t0+" << offset << "(=10ns) = " << start << ".";
std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE.";
std::cerr << std::endl;
}
if (end < 0) {
end = fForward.size();
fRunInfo->SetDataRange(end, 1);
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** data range was not provided, will try data range end = " << end << ".";
std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE.";
std::cerr << std::endl;
}
// check if start and end make any sense
// 1st check if start and end are in proper order
if (end < start) { // need to swap them
Int_t keep = end;
end = start;
start = keep;
}
// 2nd check if start is within proper bounds
if ((start < 0) || (start > static_cast<Int_t>(fForward.size()))) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **ERROR** start data bin (" << start << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
// 3rd check if end is within proper bounds
if (end < 0) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **ERROR** end data bin (" << end << ") doesn't make any sense!";
std::cerr << std::endl;
return false;
}
if (end > static_cast<Int_t>(fForward.size())) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** end data bin (" << end << ") > histo length (" << fForward.size() << ").";
std::cerr << std::endl << ">> Will set end = (histo length - 1). Consider to change it in the msr-file." << std::endl;
std::cerr << std::endl;
end = static_cast<Int_t>(fForward.size()-1);
}
// keep good bins for potential later use
fGoodBins[0] = start;
fGoodBins[1] = end;
return true;
}
//--------------------------------------------------------------------------
// GetProperFitRange (private)
//--------------------------------------------------------------------------
/**
* <p>Get the proper fit range. There are two possible fit range commands:
* fit <start> <end> given in (usec), or
* fit fgb+offset_0 lgb-offset_1 given in (bins), therefore it works the following way:
* -# get fit range assuming given in time from RUN block
* -# if fit range in RUN block is given in bins, replace start/end
* -# if fit range is NOT given yet, try fit range assuming given in time from GLOBAL block
* -# if fit range in GLOBAL block is given in bins, replace start/end
* -# if still no fit range is given, use fgb/lgb.
*
* \param globalBlock pointer to the GLOBAL block information form the msr-file.
*/
void PRunSingleHistoRRF::GetProperFitRange(PMsrGlobalBlock *globalBlock)
{
// set fit start/end time; first check RUN Block
fFitStartTime = fRunInfo->GetFitRange(0);
fFitEndTime = fRunInfo->GetFitRange(1);
// if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now
if (fRunInfo->IsFitRangeInBin()) {
fFitStartTime = (fGoodBins[0] + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt
fFitEndTime = (fGoodBins[1] - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt
// write these times back into the data structure. This way it is available when writting the log-file
fRunInfo->SetFitRange(fFitStartTime, 0);
fRunInfo->SetFitRange(fFitEndTime, 1);
}
if (fFitStartTime == PMUSR_UNDEFINED) { // fit start/end NOT found in the RUN block, check GLOBAL block
fFitStartTime = globalBlock->GetFitRange(0);
fFitEndTime = globalBlock->GetFitRange(1);
// if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now
if (globalBlock->IsFitRangeInBin()) {
fFitStartTime = (fGoodBins[0] + globalBlock->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt
fFitEndTime = (fGoodBins[1] - globalBlock->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt
// write these times back into the data structure. This way it is available when writting the log-file
globalBlock->SetFitRange(fFitStartTime, 0);
globalBlock->SetFitRange(fFitEndTime, 1);
}
}
if ((fFitStartTime == PMUSR_UNDEFINED) || (fFitEndTime == PMUSR_UNDEFINED)) {
fFitStartTime = (fGoodBins[0] - fT0s[0]) * fTimeResolution; // (fgb-t0)*dt
fFitEndTime = (fGoodBins[1] - fT0s[0]) * fTimeResolution; // (lgb-t0)*dt
std::cerr << ">> PRunSingleHistoRRF::GetProperFitRange(): **WARNING** Couldn't get fit start/end time!" << std::endl;
std::cerr << ">> Will set it to fgb/lgb which given in time is: " << fFitStartTime << "..." << fFitEndTime << " (usec)" << std::endl;
}
}
//--------------------------------------------------------------------------
// GetMainFrequency (private)
//--------------------------------------------------------------------------
/**
* <p>gets the maximum frequency of the given data.
*
* \param raw data set.
*/
Double_t PRunSingleHistoRRF::GetMainFrequency(PDoubleVector &data)
{
Double_t freqMax = 0.0;
// create histo
Double_t startTime = (fGoodBins[0]-fT0s[0]) * fTimeResolution;
Int_t noOfBins = fGoodBins[1]-fGoodBins[0]+1;
TH1F *histo = new TH1F("data", "data", noOfBins, startTime-fTimeResolution/2.0, startTime+fTimeResolution/2.0+noOfBins*fTimeResolution);
for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) {
histo->SetBinContent(i-fGoodBins[0]+1, data[i]);
}
// Fourier transform
PFourier *ft = new PFourier(histo, FOURIER_UNIT_FREQ);
ft->Transform(F_APODIZATION_STRONG);
// find frequency maximum
TH1F *power = ft->GetPowerFourier();
Double_t maxFreqVal = 0.0;
for (Int_t i=1; i<power->GetNbinsX(); i++) {
// ignore dc part at 0 frequency
if (i<power->GetNbinsX()-1) {
if (power->GetBinContent(i)>power->GetBinContent(i+1))
continue;
}
// ignore everything below 10 MHz
if (power->GetBinCenter(i) < 10.0)
continue;
// check for maximum
if (power->GetBinContent(i) > maxFreqVal) {
maxFreqVal = power->GetBinContent(i);
freqMax = power->GetBinCenter(i);
}
}
// clean up
if (power)
delete power;
if (ft)
delete ft;
if (histo)
delete histo;
return freqMax;
}
//--------------------------------------------------------------------------
// EstimateN0 (private)
//--------------------------------------------------------------------------
/**
* <p>Estimate the N0 for the given run.
*
* \param errN0
*/
Double_t PRunSingleHistoRRF::EstimateN0(Double_t &errN0, Double_t freqMax)
{
// endBin is estimated such that the number of full cycles (according to the maximum frequency of the data)
// is approximately the time fN0EstimateEndTime.
Int_t endBin = static_cast<Int_t>(round(ceil(fN0EstimateEndTime*freqMax/TMath::TwoPi()) * (TMath::TwoPi()/freqMax) / fTimeResolution));
Double_t n0 = 0.0;
Double_t wN = 0.0;
for (Int_t i=0; i<endBin; i++) {
// n0 += fW[i]*fM[i];
n0 += fM[i];
wN += fW[i];
}
// n0 /= wN;
n0 /= endBin;
errN0 = 0.0;
for (Int_t i=0; i<endBin; i++) {
errN0 += fW[i]*fW[i]*fMerr[i]*fMerr[i];
}
errN0 = sqrt(errN0)/wN;
std::cout << "info> PRunSingleHistoRRF::EstimateN0(): N0=" << n0 << "(" << errN0 << ")" << std::endl;
return n0;
}
//--------------------------------------------------------------------------
// EstimatBkg (private)
//--------------------------------------------------------------------------
/**
* <p>Estimate the background for a given interval.
*
* <b>return:</b>
* - true, if everything went smooth
* - false, otherwise
*
* \param histoNo forward histogram number of the run
*/
Bool_t PRunSingleHistoRRF::EstimateBkg(UInt_t histoNo)
{
Double_t beamPeriod = 0.0;
// check if data are from PSI, RAL, or TRIUMF
if (fRunInfo->GetInstitute()->Contains("psi"))
beamPeriod = ACCEL_PERIOD_PSI;
else if (fRunInfo->GetInstitute()->Contains("ral"))
beamPeriod = ACCEL_PERIOD_RAL;
else if (fRunInfo->GetInstitute()->Contains("triumf"))
beamPeriod = ACCEL_PERIOD_TRIUMF;
else
beamPeriod = 0.0;
// check if start and end are in proper order
UInt_t start = fRunInfo->GetBkgRange(0);
UInt_t end = fRunInfo->GetBkgRange(1);
if (end < start) {
std::cout << std::endl << "PRunSingleHistoRRF::EstimatBkg(): end = " << end << " > start = " << start << "! Will swap them!";
UInt_t keep = end;
end = start;
start = keep;
}
// calculate proper background range
if (beamPeriod != 0.0) {
Double_t timeBkg = static_cast<Double_t>(end-start)*fTimeResolution; // length of the background intervall in time
UInt_t fullCycles = static_cast<UInt_t>(timeBkg/beamPeriod); // how many proton beam cylces can be placed within the proposed background intervall
// correct the end of the background intervall such that the background is as close as possible to a multiple of the proton cylce
end = start + static_cast<UInt_t>((fullCycles*beamPeriod)/fTimeResolution);
std::cout << std::endl << "PRunSingleHistoRRF::EstimatBkg(): Background " << start << ", " << end;
if (end == start)
end = fRunInfo->GetBkgRange(1);
}
// check if start is within histogram bounds
if (start >= fForward.size()) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::EstimatBkg(): **ERROR** background bin values out of bound!";
std::cerr << std::endl << ">> histo lengths = " << fForward.size();
std::cerr << std::endl << ">> background start = " << start;
std::cerr << std::endl;
return false;
}
// check if end is within histogram bounds
if (end >= fForward.size()) {
std::cerr << std::endl << ">> PRunSingleHistoRRF::EstimatBkg(): **ERROR** background bin values out of bound!";
std::cerr << std::endl << ">> histo lengths = " << fForward.size();
std::cerr << std::endl << ">> background end = " << end;
std::cerr << std::endl;
return false;
}
// calculate background
Double_t bkg = 0.0;
// forward
for (UInt_t i=start; i<end; i++)
bkg += fForward[i];
bkg /= static_cast<Double_t>(end - start + 1);
fBackground = bkg; // keep background (per bin)
bkg = 0.0;
for (UInt_t i=start; i<end; i++)
bkg += pow(fForward[i]-fBackground, 2.0);
fBkgErr = sqrt(bkg/(static_cast<Double_t>(end - start)));
std::cout << std::endl << "info> fBackground=" << fBackground << "(" << fBkgErr << ")" << std::endl;
fRunInfo->SetBkgEstimated(fBackground, 0);
return true;
}