/*************************************************************************** PRunSingleHistoRRF.cpp Author: Andreas Suter e-mail: andreas.suter@psi.ch ***************************************************************************/ /*************************************************************************** * Copyright (C) 2007-2020 by Andreas Suter * * andreas.suter@psi.ch * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef HAVE_GOMP #include #endif #include #include #include #include #include #include #include #include "PMusr.h" #include "PFourier.h" #include "PRunSingleHistoRRF.h" //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

Constructor */ PRunSingleHistoRRF::PRunSingleHistoRRF() : PRunBase() { fNoOfFitBins = 0; fBackground = 0.0; fBkgErr = 1.0; fRRFPacking = -1; // the 2 following variables are need in case fit range is given in bins, and since // the fit range can be changed in the command block, these variables need to be accessible fGoodBins[0] = -1; fGoodBins[1] = -1; fN0EstimateEndTime = 1.0; // end time in (us) over which N0 is estimated. } //-------------------------------------------------------------------------- // Constructor //-------------------------------------------------------------------------- /** *

Constructor * * \param msrInfo pointer to the msr-file handler * \param rawData raw run data * \param runNo number of the run within the msr-file * \param tag tag showing what shall be done: kFit == fitting, kView == viewing */ PRunSingleHistoRRF::PRunSingleHistoRRF(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag) : PRunBase(msrInfo, rawData, runNo, tag) { fNoOfFitBins = 0; PMsrGlobalBlock *global = msrInfo->GetMsrGlobal(); if (!global->IsPresent()) { std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no GLOBAL-block present!"; std::cerr << std::endl << ">> For Single Histo RRF the GLOBAL-block is mandatory! Please fix this first."; std::cerr << std::endl; fValid = false; return; } if (!global->GetRRFUnit().CompareTo("??")) { std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no RRF-Frequency found!"; std::cerr << std::endl; fValid = false; return; } fRRFPacking = global->GetRRFPacking(); if (fRRFPacking == -1) { std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: no RRF-Packing found!"; std::cerr << std::endl; fValid = false; return; } // the 2 following variables are need in case fit range is given in bins, and since // the fit range can be changed in the command block, these variables need to be accessible fGoodBins[0] = -1; fGoodBins[1] = -1; fN0EstimateEndTime = 1.0; // end time in (us) over which N0 is estimated. if (!PrepareData()) { std::cerr << std::endl << ">> PRunSingleHistoRRF::PRunSingleHistoRRF(): **SEVERE ERROR**: Couldn't prepare data for fitting!"; std::cerr << std::endl << ">> This is very bad :-(, will quit ..."; std::cerr << std::endl; fValid = false; } } //-------------------------------------------------------------------------- // Destructor //-------------------------------------------------------------------------- /** *

Destructor */ PRunSingleHistoRRF::~PRunSingleHistoRRF() { fForward.clear(); } //-------------------------------------------------------------------------- // CalcChiSquare (public) //-------------------------------------------------------------------------- /** *

Calculate chi-square. * * return: * - chisq value * * \param par parameter vector iterated by minuit2 */ Double_t PRunSingleHistoRRF::CalcChiSquare(const std::vector& par) { Double_t chisq = 0.0; Double_t diff = 0.0; // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { UInt_t funcNo = fMsrInfo->GetFuncNo(i); fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData); } // calculate chi square Double_t time(1.0); Int_t i; // Calculate the theory function once to ensure one function evaluation for the current set of parameters. // This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once // for a given set of parameters---which should be done outside of the parallelized loop. // For all other functions it means a tiny and acceptable overhead. time = fTheory->Func(time, par, fFuncValues); #ifdef HAVE_GOMP Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs(); if (chunk < 10) chunk = 10; #pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq) #endif for (i=fStartTimeBin; i(i)*fData.GetDataTimeStep(); diff = fData.GetValue()->at(i) - fTheory->Func(time, par, fFuncValues); chisq += diff*diff / (fData.GetError()->at(i)*fData.GetError()->at(i)); } return chisq; } //-------------------------------------------------------------------------- // CalcChiSquareExpected (public) //-------------------------------------------------------------------------- /** *

Calculate expected chi-square. * * return: * - chisq value * * \param par parameter vector iterated by minuit2 */ Double_t PRunSingleHistoRRF::CalcChiSquareExpected(const std::vector& par) { Double_t chisq = 0.0; Double_t diff = 0.0; Double_t theo = 0.0; // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { UInt_t funcNo = fMsrInfo->GetFuncNo(i); fFuncValues[i] = fMsrInfo->EvalFunc(funcNo, *fRunInfo->GetMap(), par, fMetaData); } // calculate chi square Double_t time(1.0); Int_t i; // Calculate the theory function once to ensure one function evaluation for the current set of parameters. // This is needed for the LF and user functions where some non-thread-save calculations only need to be calculated once // for a given set of parameters---which should be done outside of the parallelized loop. // For all other functions it means a tiny and acceptable overhead. time = fTheory->Func(time, par, fFuncValues); #ifdef HAVE_GOMP Int_t chunk = (fEndTimeBin - fStartTimeBin)/omp_get_num_procs(); if (chunk < 10) chunk = 10; #pragma omp parallel for default(shared) private(i,time,diff) schedule(dynamic,chunk) reduction(+:chisq) #endif for (i=fStartTimeBin; i < fEndTimeBin; ++i) { time = fData.GetDataTimeStart() + static_cast(i)*fData.GetDataTimeStep(); theo = fTheory->Func(time, par, fFuncValues); diff = fData.GetValue()->at(i) - theo; chisq += diff*diff / theo; } return chisq; } //-------------------------------------------------------------------------- // CalcMaxLikelihood (public) //-------------------------------------------------------------------------- /** *

Calculate log maximum-likelihood. See http://pdg.lbl.gov/index.html * * return: * - log maximum-likelihood value * * \param par parameter vector iterated by minuit2 */ Double_t PRunSingleHistoRRF::CalcMaxLikelihood(const std::vector& par) { // not yet implemented return 0.0; } //-------------------------------------------------------------------------- // CalcTheory (public) //-------------------------------------------------------------------------- /** *

Calculate theory for a given set of fit-parameters. */ void PRunSingleHistoRRF::CalcTheory() { // feed the parameter vector std::vector par; PMsrParamList *paramList = fMsrInfo->GetMsrParamList(); for (UInt_t i=0; isize(); i++) par.push_back((*paramList)[i].fValue); // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData); } // calculate theory UInt_t size = fData.GetValue()->size(); Double_t start = fData.GetDataTimeStart(); Double_t resolution = fData.GetDataTimeStep(); Double_t time; for (UInt_t i=0; i(i)*resolution; fData.AppendTheoryValue(fTheory->Func(time, par, fFuncValues)); } // clean up par.clear(); } //-------------------------------------------------------------------------- // GetNoOfFitBins (public) //-------------------------------------------------------------------------- /** *

Calculate the number of fitted bins for the current fit range. * * return: number of fitted bins. */ UInt_t PRunSingleHistoRRF::GetNoOfFitBins() { CalcNoOfFitBins(); return fNoOfFitBins; } //-------------------------------------------------------------------------- // SetFitRangeBin (public) //-------------------------------------------------------------------------- /** *

Allows to change the fit range on the fly. Used in the COMMAND block. * The syntax of the string is: FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]]. * If only one pair of fgb/lgb is given, it is used for all runs in the RUN block section. * If multiple fgb/lgb's are given, the number N has to be the number of RUN blocks in * the msr-file. * *

nXY are offsets which can be used to shift, limit the fit range. * * \param fitRange string containing the necessary information. */ void PRunSingleHistoRRF::SetFitRangeBin(const TString fitRange) { TObjArray *tok = nullptr; TObjString *ostr = nullptr; TString str; Ssiz_t idx = -1; Int_t offset = 0; tok = fitRange.Tokenize(" \t"); if (tok->GetEntries() == 3) { // structure FIT_RANGE fgb+n0 lgb-n1 // handle fgb+n0 entry ostr = dynamic_cast(tok->At(1)); str = ostr->GetString(); // check if there is an offset present idx = str.First("+"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution; // handle lgb-n1 entry ostr = dynamic_cast(tok->At(2)); str = ostr->GetString(); // check if there is an offset present idx = str.First("-"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution; } else if ((tok->GetEntries() > 3) && (tok->GetEntries() % 2 == 1)) { // structure FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]] Int_t pos = 2*(fRunNo+1)-1; if (pos + 1 >= tok->GetEntries()) { std::cerr << std::endl << ">> PRunSingleHistoRRF::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'"; std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl; } else { // handle fgb+n0 entry ostr = dynamic_cast(tok->At(pos)); str = ostr->GetString(); // check if there is an offset present idx = str.First("+"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitStartTime = (fGoodBins[0] + offset - fT0s[0]) * fTimeResolution; // handle lgb-n1 entry ostr = dynamic_cast(tok->At(pos+1)); str = ostr->GetString(); // check if there is an offset present idx = str.First("-"); if (idx != -1) { // offset present str.Remove(0, idx+1); if (str.IsFloat()) // if str is a valid number, convert is to an integer offset = str.Atoi(); } fFitEndTime = (fGoodBins[1] - offset - fT0s[0]) * fTimeResolution; } } else { // error std::cerr << std::endl << ">> PRunSingleHistoRRF::SetFitRangeBin(): **ERROR** invalid FIT_RANGE command found: '" << fitRange << "'"; std::cerr << std::endl << ">> will ignore it. Sorry ..." << std::endl; } // clean up if (tok) { delete tok; } } //-------------------------------------------------------------------------- // CalcNoOfFitBins (public) //-------------------------------------------------------------------------- /** *

Calculate the number of fitted bins for the current fit range. */ void PRunSingleHistoRRF::CalcNoOfFitBins() { // In order not having to loop over all bins and to stay consistent with the chisq method, calculate the start and end bins explicitly fStartTimeBin = static_cast(ceil((fFitStartTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())); if (fStartTimeBin < 0) fStartTimeBin = 0; fEndTimeBin = static_cast(floor((fFitEndTime - fData.GetDataTimeStart())/fData.GetDataTimeStep())) + 1; if (fEndTimeBin > static_cast(fData.GetValue()->size())) fEndTimeBin = fData.GetValue()->size(); if (fEndTimeBin > fStartTimeBin) fNoOfFitBins = fEndTimeBin - fStartTimeBin; else fNoOfFitBins = 0; } //-------------------------------------------------------------------------- // PrepareData (protected) //-------------------------------------------------------------------------- /** *

Prepare data for fitting or viewing. What is already processed at this stage: * -# get proper raw run data * -# get all needed forward histograms * -# get time resolution * -# get t0's and perform necessary cross checks (e.g. if t0 of msr-file (if present) are consistent with t0 of the data files, etc.) * -# add runs (if addruns are present) * -# group histograms (if grouping is present) * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunSingleHistoRRF::PrepareData() { Bool_t success = true; // keep the Global block info PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal(); // get the proper run PRawRunData* runData = fRawData->GetRunData(*fRunInfo->GetRunName()); if (!runData) { // couldn't get run std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **ERROR** Couldn't get run " << fRunInfo->GetRunName()->Data() << "!"; std::cerr << std::endl; return false; } // keep the field from the meta-data from the data-file fMetaData.fField = runData->GetField(); // keep the energy from the meta-data from the data-file fMetaData.fEnergy = runData->GetEnergy(); // keep the temperature(s) from the meta-data from the data-file for (unsigned int i=0; iGetNoOfTemperatures(); i++) fMetaData.fTemp.push_back(runData->GetTemperature(i)); // collect histogram numbers PUIntVector histoNo; // histoNo = msr-file forward + redGreen_offset - 1 for (UInt_t i=0; iGetForwardHistoNoSize(); i++) { histoNo.push_back(fRunInfo->GetForwardHistoNo(i)); if (!runData->IsPresent(histoNo[i])) { std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **PANIC ERROR**:"; std::cerr << std::endl << ">> histoNo found = " << histoNo[i] << ", which is NOT present in the data file!?!?"; std::cerr << std::endl << ">> Will quit :-("; std::cerr << std::endl; histoNo.clear(); return false; } } // keep the time resolution in (us) fTimeResolution = runData->GetTimeResolution()/1.0e3; std::cout.precision(10); std::cout << std::endl << ">> PRunSingleHisto::PrepareData(): time resolution=" << std::fixed << runData->GetTimeResolution() << "(ns)" << std::endl; // get all the proper t0's and addt0's for the current RUN block if (!GetProperT0(runData, globalBlock, histoNo)) { return false; } // keep the histo of each group at this point (addruns handled below) std::vector forward; forward.resize(histoNo.size()); // resize to number of groups for (UInt_t i=0; iGetDataBin(histoNo[i])->size()); forward[i] = *runData->GetDataBin(histoNo[i]); } // check if there are runs to be added to the current one if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present PRawRunData *addRunData; for (UInt_t i=1; iGetRunNameSize(); i++) { // get run to be added to the main one addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i)); if (addRunData == nullptr) { // couldn't get run std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareData(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!"; std::cerr << std::endl; return false; } // add forward run UInt_t addRunSize; for (UInt_t k=0; kGetDataBin(histoNo[k])->size(); for (UInt_t j=0; jGetDataBin(histoNo[k])->size(); j++) { // loop over the bin indices // make sure that the index stays in the proper range if ((static_cast(j)+static_cast(fAddT0s[i-1][k])-static_cast(fT0s[k]) >= 0) && (j+static_cast(fAddT0s[i-1][k])-static_cast(fT0s[k]) < addRunSize)) { forward[k][j] += addRunData->GetDataBin(histoNo[k])->at(j+static_cast(fAddT0s[i-1][k])-static_cast(fT0s[k])); } } } } } // set forward histo data of the first group fForward.resize(forward[0].size()); for (UInt_t i=0; iGetDataBin(histoNo[i])->size(); j++) { // loop over the bin indices // make sure that the index stays within proper range if ((static_cast(j)+static_cast(fT0s[i])-static_cast(fT0s[0]) >= 0) && (j+static_cast(fT0s[i])-static_cast(fT0s[0]) < runData->GetDataBin(histoNo[i])->size())) { fForward[j] += forward[i][j+static_cast(fT0s[i])-static_cast(fT0s[0])]; } } } // get the data range (fgb/lgb) for the current RUN block if (!GetProperDataRange()) { return false; } // get the fit range for the current RUN block GetProperFitRange(globalBlock); // do the more fit/view specific stuff if (fHandleTag == kFit) success = PrepareFitData(runData, histoNo[0]); else if (fHandleTag == kView) success = PrepareViewData(runData, histoNo[0]); else success = false; // cleanup histoNo.clear(); return success; } //-------------------------------------------------------------------------- // PrepareFitData (protected) //-------------------------------------------------------------------------- /** *

Take the pre-processed data (i.e. grouping and addrun are preformed) and form the RRF histogram for fitting. * The following steps are preformed: * -# get fit start/stop time * -# check that 'first good data bin', 'last good data bin', and 't0' make any sense * -# check how the background shall be handled, i.e. fitted, subtracted from background estimate data range, or subtacted from a given fixed background. * -# estimate N0 * -# RRF transformation * -# packing (i.e rebinning) * * return: * - true, if everything went smooth * - false, otherwise * * \param runData raw run data handler * \param histoNo forward histogram number */ Bool_t PRunSingleHistoRRF::PrepareFitData(PRawRunData* runData, const UInt_t histoNo) { // keep the raw data for the RRF asymmetry error estimate for later PDoubleVector rawNt; for (UInt_t i=0; i freqMax=" << freqMax << " (MHz)" << std::endl; // "optimal packing" Double_t optNoPoints = 8; if (freqMax < 271.0) // < 271 MHz, i.e ~ 2T optNoPoints = 5; std::cout << "info> optimal packing: " << static_cast(1.0 / (fTimeResolution*(freqMax - fMsrInfo->GetMsrGlobal()->GetRRFFreq("MHz"))) / optNoPoints); // initially fForward is the "raw data set" (i.e. grouped histo and raw runs already added) to be fitted. This means fForward = N(t) at this point. // 1) check how the background shall be handled // subtract background from histogramms ------------------------------------------ if (fRunInfo->GetBkgFix(0) == PMUSR_UNDEFINED) { // no fixed background given if (fRunInfo->GetBkgRange(0) >= 0) { if (!EstimateBkg(histoNo)) return false; } else { // no background given to do the job, try estimate fRunInfo->SetBkgRange(static_cast(fT0s[0]*0.1), 0); fRunInfo->SetBkgRange(static_cast(fT0s[0]*0.6), 1); std::cerr << std::endl << ">> PRunSingleHistoRRF::PrepareFitData(): **WARNING** Neither fix background nor background bins are given!"; std::cerr << std::endl << ">> Will try the following: bkg start = " << fRunInfo->GetBkgRange(0) << ", bkg end = " << fRunInfo->GetBkgRange(1); std::cerr << std::endl << ">> NO WARRANTY THAT THIS MAKES ANY SENSE! Better check ..."; std::cerr << std::endl; if (!EstimateBkg(histoNo)) return false; } // subtract background from fForward for (UInt_t i=0; iGetBkgFix(0); } fBackground = fRunInfo->GetBkgFix(0); } // here fForward = N(t) - Nbkg Int_t t0 = static_cast(fT0s[0]); // 2) N(t) - Nbkg -> exp(+t/tau) [N(t)-Nbkg] Double_t startTime = fTimeResolution * (static_cast(fGoodBins[0]) - static_cast(t0)); Double_t time_tau=0.0; Double_t exp_t_tau=0.0; for (Int_t i=fGoodBins[0]; i 0.0) fW.push_back(1.0/(fMerr[i]*fMerr[i])); else fW.push_back(1.0); } // now fForward = exp(+t/tau) [N(t)-Nbkg] = M(t) // 3) estimate N0 Double_t errN0 = 0.0; Double_t n0 = EstimateN0(errN0, freqMax); // 4a) A(t) = exp(+t/tau) [N(t)-Nbkg] / N0 - 1.0 for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { fForward[i] = fForward[i] / n0 - 1.0; } // 4b) error estimate of A(t): errA(t) = exp(+t/tau)/N0 sqrt( N(t) + ([N(t)-N_bkg]/N0)^2 errN0^2 ) for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { time_tau = (startTime + fTimeResolution * (i - fGoodBins[0])) / PMUON_LIFETIME; exp_t_tau = exp(time_tau); fAerr.push_back(exp_t_tau/n0*sqrt(rawNt[i]+pow(((rawNt[i]-fBackground)/n0)*errN0,2.0))); } // 5) rotate A(t): A(t) -> 2* A(t) * cos(wRRF t + phiRRF), the factor 2.0 is needed since the high frequency part is suppressed. PMsrGlobalBlock *globalBlock = fMsrInfo->GetMsrGlobal(); Double_t wRRF = globalBlock->GetRRFFreq("Mc"); Double_t phaseRRF = globalBlock->GetRRFPhase()*TMath::TwoPi()/180.0; Double_t time = 0.0; for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { time = startTime + fTimeResolution * (static_cast(i) - static_cast(fGoodBins[0])); fForward[i] *= 2.0*cos(wRRF * time + phaseRRF); } // 6) RRF packing Double_t dval=0.0; for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { if (fRRFPacking == 1) { fData.AppendValue(fForward[i]); } else { // RRF packing > 1 if (((i-fGoodBins[0]) % fRRFPacking == 0) && (i != fGoodBins[0])) { // fill data dval /= fRRFPacking; fData.AppendValue(dval); // reset dval dval = 0.0; } dval += fForward[i]; } } // 7) estimate packed RRF errors (see log-book p.204) // the error estimate of the unpacked RRF asymmetry is: errA_RRF(t) \simeq exp(t/tau)/N0 sqrt( [N(t) + ((N(t)-N_bkg)/N0)^2 errN0^2] ) dval = 0.0; // the packed RRF asymmetry error for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { if (((i-fGoodBins[0]) % fRRFPacking == 0) && (i != fGoodBins[0])) { // fill data fData.AppendErrorValue(sqrt(2.0*dval)/fRRFPacking); // the factor 2.0 is needed since the high frequency part is suppressed. dval = 0.0; } dval += fAerr[i-fGoodBins[0]]*fAerr[i-fGoodBins[0]]; } // set start time and time step fData.SetDataTimeStart(fTimeResolution*(static_cast(fGoodBins[0])-static_cast(t0)+static_cast(fRRFPacking-1)/2.0)); fData.SetDataTimeStep(fTimeResolution*fRRFPacking); CalcNoOfFitBins(); return true; } //-------------------------------------------------------------------------- // PrepareViewData (protected) //-------------------------------------------------------------------------- /** *

Take the pre-processed data (i.e. grouping and addrun are preformed) and form the histogram for viewing * with life time correction, i.e. the exponential decay is removed. *

The following steps are preformed: * -# check if view packing is whished. * -# check that 'first good data bin', 'last good data bin', and 't0' makes any sense * -# transform data sets (see below). * -# calculate theory * * return: * - true, if everything went smooth * - false, otherwise * * \param runData raw run data handler * \param histoNo forward histogram number */ Bool_t PRunSingleHistoRRF::PrepareViewData(PRawRunData* runData, const UInt_t histoNo) { // -------------- // prepare data // -------------- // prepare RRF single histo PrepareFitData(runData, histoNo); // check for view packing Int_t viewPacking = fMsrInfo->GetMsrPlotList()->at(0).fViewPacking; if (viewPacking > 0) { if (viewPacking < fRRFPacking) { std::cerr << ">> PRunSingleHistoRRF::PrepareViewData(): **WARNING** Found View Packing (" << viewPacking << ") < RRF Packing (" << fRRFPacking << ")."; std::cerr << ">> Will ignore View Packing." << std::endl; } else { // STILL MISSING } } // -------------- // prepare theory // -------------- // feed the parameter vector std::vector par; PMsrParamList *paramList = fMsrInfo->GetMsrParamList(); for (UInt_t i=0; isize(); i++) par.push_back((*paramList)[i].fValue); // calculate functions for (Int_t i=0; iGetNoOfFuncs(); i++) { fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par, fMetaData); } // check if a finer binning for the theory is needed UInt_t size = fForward.size(); Double_t factor = 1.0; Double_t time = 0.0; Double_t theoryValue = 0.0; if (fData.GetValue()->size() * 10 > fForward.size()) { size = fData.GetValue()->size() * 10; factor = static_cast(fForward.size()) / static_cast(size); } fData.SetTheoryTimeStart(fData.GetDataTimeStart()); fData.SetTheoryTimeStep(fTimeResolution*factor); // calculate theory for (UInt_t i=0; i(i)*fData.GetTheoryTimeStep(); theoryValue = fTheory->Func(time, par, fFuncValues); if (fabs(theoryValue) > 10.0) { // dirty hack needs to be fixed!! theoryValue = 0.0; } fData.AppendTheoryValue(theoryValue); } return true; } //-------------------------------------------------------------------------- // GetProperT0 (private) //-------------------------------------------------------------------------- /** *

Get the proper t0 for the single histogram run. * -# the t0 vector size = number of detectors (grouping) for forward. * -# initialize t0's with -1 * -# fill t0's from RUN block * -# if t0's are missing (i.e. t0 == -1), try to fill from the GLOBAL block. * -# if t0's are missing, try t0's from the data file * -# if t0's are missing, try to estimate them * * \param runData pointer to the current RUN block entry from the msr-file * \param globalBlock pointer to the GLOBLA block entry from the msr-file * \param histoNo histogram number vector of forward; histoNo = msr-file forward + redGreen_offset - 1 * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunSingleHistoRRF::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &histoNo) { // feed all T0's // first init T0's, T0's are stored as (forward T0, backward T0, etc.) fT0s.clear(); fT0s.resize(histoNo.size()); for (UInt_t i=0; iGetT0BinSize(); i++) { fT0s[i] = fRunInfo->GetT0Bin(i); } // fill in the T0's from the GLOBAL block section (if present) for (UInt_t i=0; iGetT0BinSize(); i++) { if (fT0s[i] == -1.0) { // i.e. not given in the RUN block section fT0s[i] = globalBlock->GetT0Bin(i); } } // fill in the T0's from the data file, if not already present in the msr-file for (UInt_t i=0; iGetT0Bin(histoNo[i]) > 0.0) { fT0s[i] = runData->GetT0Bin(histoNo[i]); fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file } } } // fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file for (UInt_t i=0; iGetT0BinEstimated(histoNo[i]); fRunInfo->SetT0Bin(fT0s[i], i); // keep value for the msr-file std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!"; std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName()->Data(); std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << runData->GetT0BinEstimated(histoNo[i]); std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!"; std::cerr << std::endl; } } // check if t0 is within proper bounds for (UInt_t i=0; iGetForwardHistoNoSize(); i++) { if ((fT0s[i] < 0.0) || (fT0s[i] > static_cast(runData->GetDataBin(histoNo[i])->size()))) { std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** t0 data bin (" << fT0s[i] << ") doesn't make any sense!"; std::cerr << std::endl; return false; } } // check if there are runs to be added to the current one. If yes keep the needed t0's if (fRunInfo->GetRunNameSize() > 1) { // runs to be added present PRawRunData *addRunData; fAddT0s.resize(fRunInfo->GetRunNameSize()-1); // resize to the number of addruns for (UInt_t i=1; iGetRunNameSize(); i++) { // get run to be added to the main one addRunData = fRawData->GetRunData(*fRunInfo->GetRunName(i)); if (addRunData == nullptr) { // couldn't get run std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** Couldn't get addrun " << fRunInfo->GetRunName(i)->Data() << "!"; std::cerr << std::endl; return false; } // feed all T0's // first init T0's, T0's are stored as (forward T0, backward T0, etc.) fAddT0s[i-1].resize(histoNo.size()); for (UInt_t j=0; jGetT0BinSize(); j++) { fAddT0s[i-1][j] = fRunInfo->GetAddT0Bin(i-1,j); // addRunIdx starts at 0 } // fill in the T0's from the data file, if not already present in the msr-file for (UInt_t j=0; jGetT0Bin(histoNo[j]) > 0.0) { fAddT0s[i-1][j] = addRunData->GetT0Bin(histoNo[j]); fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file } } // fill in the T0's gaps, i.e. in case the T0's are NOT in the msr-file and NOT in the data file for (UInt_t j=0; jGetT0BinEstimated(histoNo[j]); fRunInfo->SetAddT0Bin(fAddT0s[i-1][j], i-1, j); // keep value for the msr-file std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **WARRNING** NO t0's found, neither in the run data nor in the msr-file!"; std::cerr << std::endl << ">> run: " << fRunInfo->GetRunName(i)->Data(); std::cerr << std::endl << ">> will try the estimated one: forward t0 = " << addRunData->GetT0BinEstimated(histoNo[j]); std::cerr << std::endl << ">> NO WARRANTY THAT THIS OK!! For instance for LEM this is almost for sure rubbish!"; std::cerr << std::endl; } } // check if t0 is within proper bounds for (UInt_t j=0; jGetForwardHistoNoSize(); j++) { if ((fAddT0s[i-1][j] < 0) || (fAddT0s[i-1][j] > static_cast(addRunData->GetDataBin(histoNo[j])->size()))) { std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperT0(): **ERROR** addt0 data bin (" << fAddT0s[i-1][j] << ") doesn't make any sense!"; std::cerr << std::endl; return false; } } } } return true; } //-------------------------------------------------------------------------- // GetProperDataRange (private) //-------------------------------------------------------------------------- /** *

Get the proper data range, i.e. first/last good bin (fgb/lgb). * -# get fgb/lgb from the RUN block * -# if fgb/lgb still undefined, try to get it from the GLOBAL block * -# if fgb/lgb still undefined, try to estimate them. * * return: * - true if everthing went smooth * - false, otherwise. */ Bool_t PRunSingleHistoRRF::GetProperDataRange() { // get start/end data Int_t start; Int_t end; start = fRunInfo->GetDataRange(0); end = fRunInfo->GetDataRange(1); // check if data range has been given in the RUN block, if not try to get it from the GLOBAL block if (start < 0) { start = fMsrInfo->GetMsrGlobal()->GetDataRange(0); } if (end < 0) { end = fMsrInfo->GetMsrGlobal()->GetDataRange(1); } // check if data range has been provided, and if not try to estimate them if (start < 0) { Int_t offset = static_cast(10.0e-3/fTimeResolution); start = static_cast(fT0s[0])+offset; fRunInfo->SetDataRange(start, 0); std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** data range was not provided, will try data range start = t0+" << offset << "(=10ns) = " << start << "."; std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE."; std::cerr << std::endl; } if (end < 0) { end = fForward.size(); fRunInfo->SetDataRange(end, 1); std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** data range was not provided, will try data range end = " << end << "."; std::cerr << std::endl << ">> NO WARRANTY THAT THIS DOES MAKE ANY SENSE."; std::cerr << std::endl; } // check if start and end make any sense // 1st check if start and end are in proper order if (end < start) { // need to swap them Int_t keep = end; end = start; start = keep; } // 2nd check if start is within proper bounds if ((start < 0) || (start > static_cast(fForward.size()))) { std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **ERROR** start data bin (" << start << ") doesn't make any sense!"; std::cerr << std::endl; return false; } // 3rd check if end is within proper bounds if (end < 0) { std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **ERROR** end data bin (" << end << ") doesn't make any sense!"; std::cerr << std::endl; return false; } if (end > static_cast(fForward.size())) { std::cerr << std::endl << ">> PRunSingleHistoRRF::GetProperDataRange(): **WARNING** end data bin (" << end << ") > histo length (" << fForward.size() << ")."; std::cerr << std::endl << ">> Will set end = (histo length - 1). Consider to change it in the msr-file." << std::endl; std::cerr << std::endl; end = static_cast(fForward.size()-1); } // keep good bins for potential later use fGoodBins[0] = start; fGoodBins[1] = end; return true; } //-------------------------------------------------------------------------- // GetProperFitRange (private) //-------------------------------------------------------------------------- /** *

Get the proper fit range. There are two possible fit range commands: * fit given in (usec), or * fit fgb+offset_0 lgb-offset_1 given in (bins), therefore it works the following way: * -# get fit range assuming given in time from RUN block * -# if fit range in RUN block is given in bins, replace start/end * -# if fit range is NOT given yet, try fit range assuming given in time from GLOBAL block * -# if fit range in GLOBAL block is given in bins, replace start/end * -# if still no fit range is given, use fgb/lgb. * * \param globalBlock pointer to the GLOBAL block information form the msr-file. */ void PRunSingleHistoRRF::GetProperFitRange(PMsrGlobalBlock *globalBlock) { // set fit start/end time; first check RUN Block fFitStartTime = fRunInfo->GetFitRange(0); fFitEndTime = fRunInfo->GetFitRange(1); // if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now if (fRunInfo->IsFitRangeInBin()) { fFitStartTime = (fGoodBins[0] + fRunInfo->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt fFitEndTime = (fGoodBins[1] - fRunInfo->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt // write these times back into the data structure. This way it is available when writting the log-file fRunInfo->SetFitRange(fFitStartTime, 0); fRunInfo->SetFitRange(fFitEndTime, 1); } if (fFitStartTime == PMUSR_UNDEFINED) { // fit start/end NOT found in the RUN block, check GLOBAL block fFitStartTime = globalBlock->GetFitRange(0); fFitEndTime = globalBlock->GetFitRange(1); // if fit range is given in bins (and not time), the fit start/end time can be calculated at this point now if (globalBlock->IsFitRangeInBin()) { fFitStartTime = (fGoodBins[0] + globalBlock->GetFitRangeOffset(0) - fT0s[0]) * fTimeResolution; // (fgb+n0-t0)*dt fFitEndTime = (fGoodBins[1] - globalBlock->GetFitRangeOffset(1) - fT0s[0]) * fTimeResolution; // (lgb-n1-t0)*dt // write these times back into the data structure. This way it is available when writting the log-file globalBlock->SetFitRange(fFitStartTime, 0); globalBlock->SetFitRange(fFitEndTime, 1); } } if ((fFitStartTime == PMUSR_UNDEFINED) || (fFitEndTime == PMUSR_UNDEFINED)) { fFitStartTime = (fGoodBins[0] - fT0s[0]) * fTimeResolution; // (fgb-t0)*dt fFitEndTime = (fGoodBins[1] - fT0s[0]) * fTimeResolution; // (lgb-t0)*dt std::cerr << ">> PRunSingleHistoRRF::GetProperFitRange(): **WARNING** Couldn't get fit start/end time!" << std::endl; std::cerr << ">> Will set it to fgb/lgb which given in time is: " << fFitStartTime << "..." << fFitEndTime << " (usec)" << std::endl; } } //-------------------------------------------------------------------------- // GetMainFrequency (private) //-------------------------------------------------------------------------- /** *

gets the maximum frequency of the given data. * * \param raw data set. */ Double_t PRunSingleHistoRRF::GetMainFrequency(PDoubleVector &data) { Double_t freqMax = 0.0; // create histo Double_t startTime = (fGoodBins[0]-fT0s[0]) * fTimeResolution; Int_t noOfBins = fGoodBins[1]-fGoodBins[0]+1; TH1F *histo = new TH1F("data", "data", noOfBins, startTime-fTimeResolution/2.0, startTime+fTimeResolution/2.0+noOfBins*fTimeResolution); for (Int_t i=fGoodBins[0]; i<=fGoodBins[1]; i++) { histo->SetBinContent(i-fGoodBins[0]+1, data[i]); } // Fourier transform PFourier *ft = new PFourier(histo, FOURIER_UNIT_FREQ); ft->Transform(F_APODIZATION_STRONG); // find frequency maximum TH1F *power = ft->GetPowerFourier(); Double_t maxFreqVal = 0.0; for (Int_t i=1; iGetNbinsX(); i++) { // ignore dc part at 0 frequency if (iGetNbinsX()-1) { if (power->GetBinContent(i)>power->GetBinContent(i+1)) continue; } // ignore everything below 10 MHz if (power->GetBinCenter(i) < 10.0) continue; // check for maximum if (power->GetBinContent(i) > maxFreqVal) { maxFreqVal = power->GetBinContent(i); freqMax = power->GetBinCenter(i); } } // clean up if (power) delete power; if (ft) delete ft; if (histo) delete histo; return freqMax; } //-------------------------------------------------------------------------- // EstimateN0 (private) //-------------------------------------------------------------------------- /** *

Estimate the N0 for the given run. * * \param errN0 */ Double_t PRunSingleHistoRRF::EstimateN0(Double_t &errN0, Double_t freqMax) { // endBin is estimated such that the number of full cycles (according to the maximum frequency of the data) // is approximately the time fN0EstimateEndTime. Int_t endBin = static_cast(round(ceil(fN0EstimateEndTime*freqMax/TMath::TwoPi()) * (TMath::TwoPi()/freqMax) / fTimeResolution)); Double_t n0 = 0.0; Double_t wN = 0.0; for (Int_t i=0; i PRunSingleHistoRRF::EstimateN0(): N0=" << n0 << "(" << errN0 << ")" << std::endl; return n0; } //-------------------------------------------------------------------------- // EstimatBkg (private) //-------------------------------------------------------------------------- /** *

Estimate the background for a given interval. * * return: * - true, if everything went smooth * - false, otherwise * * \param histoNo forward histogram number of the run */ Bool_t PRunSingleHistoRRF::EstimateBkg(UInt_t histoNo) { Double_t beamPeriod = 0.0; // check if data are from PSI, RAL, or TRIUMF if (fRunInfo->GetInstitute()->Contains("psi")) beamPeriod = ACCEL_PERIOD_PSI; else if (fRunInfo->GetInstitute()->Contains("ral")) beamPeriod = ACCEL_PERIOD_RAL; else if (fRunInfo->GetInstitute()->Contains("triumf")) beamPeriod = ACCEL_PERIOD_TRIUMF; else beamPeriod = 0.0; // check if start and end are in proper order UInt_t start = fRunInfo->GetBkgRange(0); UInt_t end = fRunInfo->GetBkgRange(1); if (end < start) { std::cout << std::endl << "PRunSingleHistoRRF::EstimatBkg(): end = " << end << " > start = " << start << "! Will swap them!"; UInt_t keep = end; end = start; start = keep; } // calculate proper background range if (beamPeriod != 0.0) { Double_t timeBkg = static_cast(end-start)*fTimeResolution; // length of the background intervall in time UInt_t fullCycles = static_cast(timeBkg/beamPeriod); // how many proton beam cylces can be placed within the proposed background intervall // correct the end of the background intervall such that the background is as close as possible to a multiple of the proton cylce end = start + static_cast((fullCycles*beamPeriod)/fTimeResolution); std::cout << std::endl << "PRunSingleHistoRRF::EstimatBkg(): Background " << start << ", " << end; if (end == start) end = fRunInfo->GetBkgRange(1); } // check if start is within histogram bounds if (start >= fForward.size()) { std::cerr << std::endl << ">> PRunSingleHistoRRF::EstimatBkg(): **ERROR** background bin values out of bound!"; std::cerr << std::endl << ">> histo lengths = " << fForward.size(); std::cerr << std::endl << ">> background start = " << start; std::cerr << std::endl; return false; } // check if end is within histogram bounds if (end >= fForward.size()) { std::cerr << std::endl << ">> PRunSingleHistoRRF::EstimatBkg(): **ERROR** background bin values out of bound!"; std::cerr << std::endl << ">> histo lengths = " << fForward.size(); std::cerr << std::endl << ">> background end = " << end; std::cerr << std::endl; return false; } // calculate background Double_t bkg = 0.0; // forward for (UInt_t i=start; i(end - start + 1); fBackground = bkg; // keep background (per bin) bkg = 0.0; for (UInt_t i=start; i(end - start))); std::cout << std::endl << "info> fBackground=" << fBackground << "(" << fBkgErr << ")" << std::endl; fRunInfo->SetBkgEstimated(fBackground, 0); return true; }