musrfit/src/external/BMWtools/BMWIntegrator.h
2011-06-03 11:28:26 +00:00

656 lines
22 KiB
C++

/***************************************************************************
BMWIntegrator.h
Author: Bastian M. Wojek
$Id$
***************************************************************************/
/***************************************************************************
* Copyright (C) 2009 by Bastian M. Wojek *
* bastian.wojek@psi.ch *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef _BMWIntegrator_H_
#define _BMWIntegrator_H_
#include "Math/GSLIntegrator.h"
#include "Math/GSLMCIntegrator.h"
#include "TMath.h"
#include <cmath>
#include <vector>
using namespace std;
/**
* <p>Alternative base class for 1D integrations using the GNU Scientific Library integrator.
* The difference to the other class is that here the integration parameters have to be supplied directly to the IntegrateFunc method.
* Therefore, integrals with different parameters can be calculated in parallel (at least I hope so).
* The function which should be integrated has to be implemented in a derived class.
* Note: The purpose of this is to offer an easy-to-use interface---not the most efficient integration routine.
*/
class T2Integrator {
public:
T2Integrator() {}; ///< default constructor
virtual ~T2Integrator() {}; ///< default destructor
virtual double IntegrateFunc(double, double, const std::vector<double> &par);
private:
virtual double FuncAtX(double, const std::vector<double> &par) const = 0;
static double FuncAtXgsl(double, void *);
};
/**
* <p>Method for passing the integrand function value to the integrator.
*
* <p><b>return:</b>
* - function value of the integrand
*
* \param x point at which the function value is calculated
* \param ptrPair pointers to the function object and the parameters for the integration
*/
inline double T2Integrator::FuncAtXgsl(double x, void *ptrPair)
{
pair<T2Integrator*, const vector<double>*> *pairOfPointers = static_cast<pair<T2Integrator*, const vector<double>*>*>(ptrPair);
return pairOfPointers->first->FuncAtX(x, *(pairOfPointers->second));
}
/**
* <p>Calculate the integral of the function between the given boundaries
*
* <p><b>return:</b>
* - value of the integral
*
* \param x1 lower boundary
* \param x2 upper boundary
* \param par additional parameters for the integration
*/
inline double T2Integrator::IntegrateFunc(double x1, double x2, const std::vector<double> &par)
{
pair<T2Integrator*, const vector<double>*> ptrPair;
ptrPair.first = (this);
ptrPair.second = &par;
ROOT::Math::GSLIntegrator *integrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
double value(integrator->Integral(&T2Integrator::FuncAtXgsl, static_cast<void*>(&ptrPair), x1, x2));
delete integrator;
integrator = 0;
return value;
}
/**
* <p>Base class for 1D integrations using the GNU Scientific Library integrator.
* The function which should be integrated has to be implemented in a derived class.
* Note: The purpose of this is to offer an easy-to-use interface---not the most efficient integration routine.
*/
class TIntegrator {
public:
TIntegrator();
virtual ~TIntegrator();
void SetParameters(const std::vector<double> &par) const { fPar=par; }
virtual double FuncAtX(double) const = 0;
double IntegrateFunc(double, double);
protected:
mutable vector<double> fPar; ///< parameters of the integrand
private:
static double FuncAtXgsl(double, void *);
ROOT::Math::GSLIntegrator *fIntegrator; ///< pointer to the GSL integrator
mutable double (*fFunc)(double, void *); ///< pointer to the integrand function
};
/**
* <p>Constructor of the base class for 1D integrations
* Allocation of memory for an integration using the adaptive 31 point Gauss-Kronrod rule
*/
inline TIntegrator::TIntegrator() : fFunc(0) {
fIntegrator = new ROOT::Math::GSLIntegrator(ROOT::Math::Integration::kADAPTIVE,ROOT::Math::Integration::kGAUSS31);
}
/**
* <p>Destructor of the base class for 1D integrations
* Clean up.
*/
inline TIntegrator::~TIntegrator(){
fPar.clear();
delete fIntegrator;
fIntegrator=0;
fFunc=0;
}
/**
* <p>Method for passing the integrand function value to the integrator.
*
* <p><b>return:</b>
* - function value of the integrand
*
* \param x point at which the function value is calculated
* \param obj pointer to the integrator
*/
inline double TIntegrator::FuncAtXgsl(double x, void *obj)
{
return ((TIntegrator*)obj)->FuncAtX(x);
}
/**
* <p>Calculate the integral of the function between the given boundaries
*
* <p><b>return:</b>
* - value of the integral
*
* \param x1 lower boundary
* \param x2 upper boundary
*/
inline double TIntegrator::IntegrateFunc(double x1, double x2)
{
fFunc = &TIntegrator::FuncAtXgsl;
return fIntegrator->Integral(fFunc, (this), x1, x2);
}
/**
* <p>Base class for multidimensional Monte-Carlo integrations using the GNU Scientific Library integrator.
* The function which should be integrated has to be implemented in a derived class.
* Note: The purpose of this is to offer an easy-to-use interface---not the most efficient integration routine.
*/
class TMCIntegrator {
public:
TMCIntegrator();
virtual ~TMCIntegrator();
void SetParameters(const std::vector<double> &par) const { fPar=par; }
virtual double FuncAtX(double *) const = 0;
double IntegrateFunc(size_t, double *, double *);
protected:
mutable vector<double> fPar; ///< parameters of the integrand
private:
static double FuncAtXgsl(double *, size_t, void *);
ROOT::Math::GSLMCIntegrator *fMCIntegrator; ///< pointer to the GSL integrator
mutable double (*fFunc)(double *, size_t, void *); ///< pointer to the integrand function
};
/**
* <p>Constructor of the base class for multidimensional Monte-Carlo integrations
* Allocation of memory for an integration using the MISER algorithm of Press and Farrar
*/
inline TMCIntegrator::TMCIntegrator() : fFunc(0) {
fMCIntegrator = new ROOT::Math::GSLMCIntegrator(ROOT::Math::MCIntegration::kMISER, 1.E-6, 1.E-4, 500000);
}
/**
* <p>Destructor of the base class for 1D integrations
* Clean up.
*/
inline TMCIntegrator::~TMCIntegrator(){
fPar.clear();
delete fMCIntegrator;
fMCIntegrator=0;
fFunc=0;
}
/**
* <p>Method for passing the integrand function value to the integrator.
*
* <p><b>return:</b>
* - function value of the integrand
*
* \param x point at which the function value is calculated
* \param dim number of dimensions
* \param obj pointer to the integrator
*/
inline double TMCIntegrator::FuncAtXgsl(double *x, size_t dim, void *obj)
{
return ((TMCIntegrator*)obj)->FuncAtX(x);
}
/**
* <p>Calculate the integral of the function between the given boundaries
*
* <p><b>return:</b>
* - value of the integral
*
* \param dim number of dimensions
* \param x1 lower boundary array
* \param x2 upper boundary array
*/
inline double TMCIntegrator::IntegrateFunc(size_t dim, double *x1, double *x2)
{
fFunc = &TMCIntegrator::FuncAtXgsl;
return fMCIntegrator->Integral(fFunc, dim, x1, x2, (this));
}
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TDWaveGapIntegralCuhre {
public:
TDWaveGapIntegralCuhre() : fNDim(2) {}
~TDWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density along the a-axis
* within the semi-classical model assuming a cylindrical Fermi surface and a mixed d_{x^2-y^2} + s symmetry of the
* superconducting order parameter (effectively: d_{x^2-y^2} with shifted nodes and a-b-anisotropy).
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TCosSqDWaveGapIntegralCuhre {
public:
TCosSqDWaveGapIntegralCuhre() : fNDim(2) {}
~TCosSqDWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density along the b-axis
* within the semi-classical model assuming a cylindrical Fermi surface and a mixed d_{x^2-y^2} + s symmetry of the
* superconducting order parameter (effectively: d_{x^2-y^2} with shifted nodes and a-b-anisotropy).
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TSinSqDWaveGapIntegralCuhre {
public:
TSinSqDWaveGapIntegralCuhre() : fNDim(2) {}
~TSinSqDWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TAnSWaveGapIntegralCuhre {
public:
TAnSWaveGapIntegralCuhre() : fNDim(2) {}
~TAnSWaveGapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
* The integration uses the Divonne algorithm of the Cuba library.
*/
class TAnSWaveGapIntegralDivonne {
public:
TAnSWaveGapIntegralDivonne() : fNDim(2) {}
~TAnSWaveGapIntegralDivonne() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
* The integration uses the Suave algorithm of the Cuba library.
*/
class TAnSWaveGapIntegralSuave {
public:
TAnSWaveGapIntegralSuave() : fNDim(2) {}
~TAnSWaveGapIntegralSuave() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "non-monotonic d-wave" symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TNonMonDWave1GapIntegralCuhre {
public:
TNonMonDWave1GapIntegralCuhre() : fNDim(2) {}
~TNonMonDWave1GapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Two-dimensional integrator class for the efficient calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "non-monotonic d-wave" symmetry of the superconducting order parameter.
* The integration uses the Cuhre algorithm of the Cuba library.
*/
class TNonMonDWave2GapIntegralCuhre {
public:
TNonMonDWave2GapIntegralCuhre() : fNDim(2) {}
~TNonMonDWave2GapIntegralCuhre() { fPar.clear(); }
void SetParameters(const std::vector<double> &par) { fPar=par; }
static int Integrand(const int*, const double[], const int*, double[], void*);
double IntegrateFunc();
protected:
static vector<double> fPar; ///< parameters of the integrand
unsigned int fNDim; ///< dimension of the integral
};
/**
* <p>Test class for the 2D MC integration
* Integral: x*y dx dy
*/
class T2DTest : public TMCIntegrator {
public:
T2DTest() {}
~T2DTest() {}
double FuncAtX(double *) const;
};
/**
* <p>Calculate the function value---actual implementation of the function x*y
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double T2DTest::FuncAtX(double *x) const
{
return x[0]*x[1];
}
/**
* <p>Class for the 2D Monte-Carlo integration for the calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and a d_{x^2-y^2} symmetry of the superconducting order parameter.
* The integration uses the GSL integration routines.
*/
class TDWaveGapIntegral : public TMCIntegrator {
public:
TDWaveGapIntegral() {}
~TDWaveGapIntegral() {}
double FuncAtX(double *) const;
};
/**
* <p>Calculate the function value---actual implementation of the function
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TDWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPar = {T, Delta(T)}
{
double twokt(2.0*0.08617384436*fPar[0]); // kB in meV/K
double deltasq(TMath::Power(fPar[1]*TMath::Cos(2.0*x[1]),2.0));
return -1.0/(2.0*twokt*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt)*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt));
}
/**
* <p>Class for the 2D Monte-Carlo integration for the calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an "anisotropic s-wave" symmetry of the superconducting order parameter.
* The integration uses the GSL integration routines.
*/
class TAnSWaveGapIntegral : public TMCIntegrator {
public:
TAnSWaveGapIntegral() {}
~TAnSWaveGapIntegral() {}
double FuncAtX(double *) const;
};
/**
* <p>Calculate the function value---actual implementation of the function
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TAnSWaveGapIntegral::FuncAtX(double *x) const // x = {E, phi}, fPar = {T, Delta(T), a}
{
double twokt(2.0*0.08617384436*fPar[0]); // kB in meV/K
double deltasq(TMath::Power(fPar[1]*(1.0+fPar[2]*TMath::Cos(4.0*x[1])),2.0));
return -1.0/(2.0*twokt*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt)*TMath::CosH(TMath::Sqrt(x[0]*x[0]+deltasq)/twokt));
}
/**
* <p>Class for the 1D integration of j0(a*x)*exp(-b*x)
* The integration uses the GSL integration routines.
*/
class TIntBesselJ0Exp : public T2Integrator {
public:
TIntBesselJ0Exp() {}
~TIntBesselJ0Exp() {}
private:
double FuncAtX(double, const vector<double>&) const;
};
/**
* <p>Calculate the function value---actual implementation of the function j0(a*x)*exp(-b*x)
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TIntBesselJ0Exp::FuncAtX(double x, const vector<double> &par) const
{
double w0t(TMath::TwoPi()*par[0]*x);
double j0;
if (fabs(w0t) < 0.001) { // check zero time limits of the spherical bessel functions j0(x) and j1(x)
j0 = 1.0;
} else {
j0 = TMath::Sin(w0t)/w0t;
}
return j0 * TMath::Exp(-par[1]*x);
}
/**
* <p>Class for the 1D integration of sin(a*x)*exp(-b*x*x)
* The integration uses the GSL integration routines.
*/
class TIntSinGss : public T2Integrator {
public:
TIntSinGss() {}
~TIntSinGss() {}
private:
double FuncAtX(double, const vector<double>&) const;
};
/**
* <p>Calculate the function value---actual implementation of the function sin(a*x)*exp(-b*x*x)
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TIntSinGss::FuncAtX(double x, const vector<double> &par) const
{
return TMath::Sin(TMath::TwoPi()*par[0]*x) * TMath::Exp(-0.5*par[1]*par[1]*x*x);
}
/**
* <p>Class for the 1D integration of the "DeRenzi Spin Glass Interpolation Integrand"
* See Eq. (5) of R. De Renzi and S. Fanesi, Physica B 289-290, 209-212 (2000).
* doi:10.1016/S0921-4526(00)00368-9
* The integration uses the GSL integration routines.
*/
class TIntSGInterpolation : public T2Integrator {
public:
TIntSGInterpolation() {}
~TIntSGInterpolation() {}
private:
double FuncAtX(double, const vector<double>&) const;
};
/**
* <p>Calculate the function value---actual implementation of the function
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TIntSGInterpolation::FuncAtX(double x, const vector<double> &par) const
{
// Parameters: nu_L [MHz], a [1/us], lambda [1/us], beta [1], t [us]
double wt(TMath::TwoPi()*par[0]*x);
double expo(0.5*par[1]*par[1]*x*x/par[3]+par[2]*par[4]);
return (wt*TMath::Cos(wt)-TMath::Sin(wt))/(wt*wt)*TMath::Exp(-TMath::Power(expo,par[3]))/TMath::Power(expo,(1.0-par[3]));
}
/**
* <p>Class for the 1D integration for the calculation of the superfluid density within the semi-classical model
* assuming a cylindrical Fermi surface and an isotropic s-wave symmetry of the superconducting order parameter.
* The integration uses the GSL integration routines.
*/
class TGapIntegral : public TIntegrator {
public:
TGapIntegral() {}
~TGapIntegral() {}
double FuncAtX(double) const; // variable: E
};
/**
* <p>Calculate the function value---actual implementation of the function df/dE * E / sqrt(E^2 - Delta^2)
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TGapIntegral::FuncAtX(double e) const
{
return 1.0/(TMath::Power(TMath::CosH(TMath::Sqrt(e*e+fPar[1]*fPar[1])/fPar[0]),2.0));
}
/**
* <p>Class for the 1D integration for the calculation of the uniaxial static Gauss-Kubo-Toyabe function
* The integration uses the GSL integration routines.
*/
class TFirstUniaxialGssKTIntegral : public T2Integrator {
public:
TFirstUniaxialGssKTIntegral() {}
virtual ~TFirstUniaxialGssKTIntegral() {}
private:
virtual double FuncAtX(double, const vector<double>&) const; // variable: x
};
/**
* <p>Calculate the function value---actual implementation of the integrand in Eq. (7) of Solt's article
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TFirstUniaxialGssKTIntegral::FuncAtX(double x, const vector<double> &par) const
{
double eps(par[0]*par[0]/(par[1]*par[1]) - 1.0);
double p(1.0 + eps*x*x);
double SsqTsq(par[0]*par[0]*par[2]*par[2]);
return (1.0 - x*x)*(p - SsqTsq)/TMath::Power(p, 2.5)*TMath::Exp(-0.5*SsqTsq/p);
}
/**
* <p>Class for the 1D integration for the calculation of the uniaxial static Gauss-Kubo-Toyabe function
* The integration uses the GSL integration routines.
*/
class TSecondUniaxialGssKTIntegral : public T2Integrator {
public:
TSecondUniaxialGssKTIntegral() {}
virtual ~TSecondUniaxialGssKTIntegral() {}
private:
virtual double FuncAtX(double, const vector<double>&) const; // variable: x
};
/**
* <p>Calculate the function value---actual implementation of the integrand in Eq. (7) of Solt's article
*
* <p><b>return:</b>
* - function value
*
* \param x point where the function should be evaluated
*/
inline double TSecondUniaxialGssKTIntegral::FuncAtX(double x, const vector<double> &par) const
{
double eps(par[0]*par[0]/(par[1]*par[1]) - 1.0);
double p(1.0 + eps*x*x);
double SsqTsq(par[0]*par[0]*par[2]*par[2]);
return (p - SsqTsq)/TMath::Power(p, 2.5)*TMath::Exp(-0.5*SsqTsq/p);
}
#endif //_TIntegrator_H_