newly added
This commit is contained in:
parent
bad93a0db1
commit
d3c5c7841a
99
src/tests/nonlocal/Makefile
Normal file
99
src/tests/nonlocal/Makefile
Normal file
@ -0,0 +1,99 @@
|
||||
#---------------------------------------------------
|
||||
# Makefile
|
||||
#
|
||||
# Author: Andreas Suter
|
||||
# e-mail: andreas.suter@psi.ch
|
||||
#
|
||||
#---------------------------------------------------
|
||||
|
||||
#---------------------------------------------------
|
||||
# get compilation and library flags from root-config
|
||||
|
||||
ROOTCFLAGS = $(shell $(ROOTSYS)/bin/root-config --cflags)
|
||||
ROOTLIBS = $(shell $(ROOTSYS)/bin/root-config --libs)
|
||||
ROOTGLIBS = $(shell $(ROOTSYS)/bin/root-config --glibs)
|
||||
|
||||
#---------------------------------------------------
|
||||
# depending on the architecture, choose the compiler,
|
||||
# linker, and the flags to use
|
||||
#
|
||||
|
||||
ARCH = $(shell $(ROOTSYS)/bin/root-config --arch)
|
||||
|
||||
ifeq ($(ARCH),linux)
|
||||
OS = LINUX
|
||||
endif
|
||||
ifeq ($(ARCH),linuxx8664gcc)
|
||||
OS = LINUX
|
||||
endif
|
||||
ifeq ($(ARCH),win32gcc)
|
||||
OS = WIN32GCC
|
||||
endif
|
||||
ifeq ($(ARCH),macosx)
|
||||
OS = DARWIN
|
||||
endif
|
||||
|
||||
# -- Linux
|
||||
ifeq ($(OS),LINUX)
|
||||
CXX = g++
|
||||
CXXFLAGS = -O3 -Wall -fPIC
|
||||
PMUSRPATH = ./include
|
||||
MNPATH = $(ROOTSYS)/include
|
||||
GSLPATH = /usr/include/gsl
|
||||
EIGEN2PATH = /usr/local/include/eigen2
|
||||
INCLUDES = -I$(PMUSRPATH) -I$(MNPATH) -I$(GSLPATH) -I$(EIGEN2PATH)
|
||||
LD = g++
|
||||
LDFLAGS = -O
|
||||
INSTALLPATH = $(ROOTSYS)/bin
|
||||
EXEC = nonlocal
|
||||
SUFFIX =
|
||||
endif
|
||||
|
||||
# the output from the root-config script:
|
||||
CXXFLAGS += $(ROOTCFLAGS)
|
||||
LDFLAGS +=
|
||||
|
||||
# the ROOT libraries (G = graphic)
|
||||
LIBS = $(ROOTLIBS) -lXMLParser
|
||||
GLIBS = $(ROOTGLIBS) -lXMLParser
|
||||
|
||||
# PSI libs
|
||||
PSILIBS = -L$(ROOTSYS)/lib -lTLemRunHeader -lPMusr
|
||||
# Minuit2 lib
|
||||
MNLIB = -L$(ROOTSYS)/lib -lMinuit2
|
||||
# MathMore lib
|
||||
MMLIB = -L$(ROOTSYS)/lib -lMathMore
|
||||
# GSL lib
|
||||
GSLLIB = -L/usr/lib -lgsl
|
||||
|
||||
# some definitions: headers, sources, objects,...
|
||||
OBJS =
|
||||
OBJS += nonlocal.o PPippard.o
|
||||
|
||||
# make the executable:
|
||||
#
|
||||
all: $(EXEC)
|
||||
|
||||
nonlocal$(SUFFIX): $(OBJS)
|
||||
@echo "---> Building $@ ..."
|
||||
/bin/rm -f $@
|
||||
$(LD) $< -o $@ PPippard.o $(LDFLAGS) $(GLIBS) $(PSILIBS) $(MNLIB) $(MMLIB) $(GSLLIB)
|
||||
@echo "done"
|
||||
|
||||
|
||||
# clean up: remove all object file (and core files)
|
||||
# semicolon needed to tell make there is no source
|
||||
# for this target!
|
||||
#
|
||||
clean:; @rm -f $(OBJS)
|
||||
@echo "---> removing $(OBJS)"
|
||||
|
||||
#
|
||||
$(OBJS): %.o: %.cpp
|
||||
$(CXX) $(INCLUDES) $(CXXFLAGS) -c $<
|
||||
|
||||
install: all
|
||||
cp -fvp $(EXEC) $(INSTALLPATH)
|
||||
cp -fvp musrfit_startup.xml $(INSTALLPATH)
|
||||
cp -fvp external/scripts/msr2data $(INSTALLPATH)
|
||||
chmod 755 $(INSTALLPATH)/msr2data
|
188
src/tests/nonlocal/NonlocalDiffuseFunc_v_w.nb
Normal file
188
src/tests/nonlocal/NonlocalDiffuseFunc_v_w.nb
Normal file
@ -0,0 +1,188 @@
|
||||
(************** Content-type: application/mathematica **************
|
||||
CreatedBy='Mathematica 5.2'
|
||||
|
||||
Mathematica-Compatible Notebook
|
||||
|
||||
This notebook can be used with any Mathematica-compatible
|
||||
application, such as Mathematica, MathReader or Publicon. The data
|
||||
for the notebook starts with the line containing stars above.
|
||||
|
||||
To get the notebook into a Mathematica-compatible application, do
|
||||
one of the following:
|
||||
|
||||
* Save the data starting with the line of stars above into a file
|
||||
with a name ending in .nb, then open the file inside the
|
||||
application;
|
||||
|
||||
* Copy the data starting with the line of stars above to the
|
||||
clipboard, then use the Paste menu command inside the application.
|
||||
|
||||
Data for notebooks contains only printable 7-bit ASCII and can be
|
||||
sent directly in email or through ftp in text mode. Newlines can be
|
||||
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).
|
||||
|
||||
NOTE: If you modify the data for this notebook not in a Mathematica-
|
||||
compatible application, you must delete the line below containing
|
||||
the word CacheID, otherwise Mathematica-compatible applications may
|
||||
try to use invalid cache data.
|
||||
|
||||
For more information on notebooks and Mathematica-compatible
|
||||
applications, contact Wolfram Research:
|
||||
web: http://www.wolfram.com
|
||||
email: info@wolfram.com
|
||||
phone: +1-217-398-0700 (U.S.)
|
||||
|
||||
Notebook reader applications are available free of charge from
|
||||
Wolfram Research.
|
||||
*******************************************************************)
|
||||
|
||||
(*CacheID: 232*)
|
||||
|
||||
|
||||
(*NotebookFileLineBreakTest
|
||||
NotebookFileLineBreakTest*)
|
||||
(*NotebookOptionsPosition[ 3636, 129]*)
|
||||
(*NotebookOutlinePosition[ 4267, 151]*)
|
||||
(* CellTagsIndexPosition[ 4223, 147]*)
|
||||
(*WindowFrame->Normal*)
|
||||
|
||||
|
||||
|
||||
Notebook[{
|
||||
Cell[BoxData[
|
||||
\(v\ = \
|
||||
2/3 + 1/6 Exp[\(-s\)] \((s \((s - 1)\) - 4)\) -
|
||||
1/6 s \((s\^2 - 6)\) Gamma[0, s]\)], "Input"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
\(w\ = \ \((8 s - 3)\)/12 +
|
||||
1/24 Exp[\(-s\)] \((s\^3 - s\^2 - 10 s + 6)\) -
|
||||
1/24 \( s\^2\) \((s\^2 - 12)\) Gamma[0, s]\)], "Input"],
|
||||
|
||||
Cell[BoxData[
|
||||
\(1\/12\ \((\(-3\) + 8\ s)\) +
|
||||
1\/24\ \[ExponentialE]\^\(-s\)\ \((6 - 10\ s - s\^2 + s\^3)\) -
|
||||
1\/24\ s\^2\ \((\(-12\) + s\^2)\)\ Gamma[0, s]\)], "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
\(Limit[w, s \[Rule] 0]\)], "Input"],
|
||||
|
||||
Cell[BoxData[
|
||||
\(0\)], "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
\(Series[v, {s, 0, 2}]\)], "Input"],
|
||||
|
||||
Cell[BoxData[
|
||||
InterpretationBox[
|
||||
RowBox[{\(\((1\/2 - EulerGamma - Log[s])\)\ s\), "+", \(s\^2\), "+",
|
||||
InterpretationBox[\(O[s]\^3\),
|
||||
SeriesData[ s, 0, {}, 1, 3, 1],
|
||||
Editable->False]}],
|
||||
SeriesData[ s, 0, {
|
||||
Plus[
|
||||
Rational[ 1, 2],
|
||||
Times[ -1, EulerGamma],
|
||||
Times[ -1,
|
||||
Log[ s]]], 1}, 1, 3, 1],
|
||||
Editable->False]], "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
\(N[EulerGamma]\)], "Input"],
|
||||
|
||||
Cell[BoxData[
|
||||
\(0.5772156649015329`\)], "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
|
||||
Cell[BoxData[
|
||||
\(Series[w, {s, 0, 2}]\)], "Input"],
|
||||
|
||||
Cell[BoxData[
|
||||
InterpretationBox[
|
||||
RowBox[{\(\((1\/2 - EulerGamma\/2 - Log[s]\/2)\)\ s\^2\), "+",
|
||||
InterpretationBox[\(O[s]\^3\),
|
||||
SeriesData[ s, 0, {}, 2, 3, 1],
|
||||
Editable->False]}],
|
||||
SeriesData[ s, 0, {
|
||||
Plus[
|
||||
Rational[ 1, 2],
|
||||
Times[
|
||||
Rational[ -1, 2], EulerGamma],
|
||||
Times[
|
||||
Rational[ -1, 2],
|
||||
Log[ s]]]}, 2, 3, 1],
|
||||
Editable->False]], "Output"]
|
||||
}, Open ]]
|
||||
},
|
||||
FrontEndVersion->"5.2 for X",
|
||||
ScreenRectangle->{{0, 1280}, {0, 1024}},
|
||||
WindowSize->{520, 600},
|
||||
WindowMargins->{{150, Automatic}, {Automatic, 52}}
|
||||
]
|
||||
|
||||
(*******************************************************************
|
||||
Cached data follows. If you edit this Notebook file directly, not
|
||||
using Mathematica, you must remove the line containing CacheID at
|
||||
the top of the file. The cache data will then be recreated when
|
||||
you save this file from within Mathematica.
|
||||
*******************************************************************)
|
||||
|
||||
(*CellTagsOutline
|
||||
CellTagsIndex->{}
|
||||
*)
|
||||
|
||||
(*CellTagsIndex
|
||||
CellTagsIndex->{}
|
||||
*)
|
||||
|
||||
(*NotebookFileOutline
|
||||
Notebook[{
|
||||
Cell[1754, 51, 139, 3, 47, "Input"],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
Cell[1918, 58, 171, 3, 51, "Input"],
|
||||
Cell[2092, 63, 187, 3, 80, "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
Cell[2316, 71, 54, 1, 27, "Input"],
|
||||
Cell[2373, 74, 35, 1, 27, "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
Cell[2445, 80, 53, 1, 27, "Input"],
|
||||
Cell[2501, 83, 421, 12, 44, "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
Cell[2959, 100, 46, 1, 27, "Input"],
|
||||
Cell[3008, 103, 53, 1, 27, "Output"]
|
||||
}, Open ]],
|
||||
|
||||
Cell[CellGroupData[{
|
||||
Cell[3098, 109, 53, 1, 27, "Input"],
|
||||
Cell[3154, 112, 466, 14, 44, "Output"]
|
||||
}, Open ]]
|
||||
}
|
||||
]
|
||||
*)
|
||||
|
||||
|
||||
|
||||
(*******************************************************************
|
||||
End of Mathematica Notebook file.
|
||||
*******************************************************************)
|
||||
|
480
src/tests/nonlocal/PPippard.cpp
Normal file
480
src/tests/nonlocal/PPippard.cpp
Normal file
@ -0,0 +1,480 @@
|
||||
// -----------------------------------------------------------------------
|
||||
// Author: Andreas Suter
|
||||
// $Id$
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#include <cstdio>
|
||||
#include <cmath>
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#include <gsl_sf_gamma.h>
|
||||
|
||||
#include <TMath.h>
|
||||
|
||||
#include "PPippard.h"
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
PPippard::PPippard(Double_t temp, Double_t lambdaL, Double_t xi0, Double_t meanFreePath, Double_t filmThickness, Bool_t specular) :
|
||||
fTemp(temp), fLambdaL(lambdaL), fXi0(xi0), fMeanFreePath(meanFreePath), fFilmThickness(filmThickness), fSpecular(specular)
|
||||
{
|
||||
fPlanPresent = false;
|
||||
fFieldq = 0;
|
||||
fFieldB = 0;
|
||||
|
||||
fSecondDerivativeMatrix = 0;
|
||||
fKernelMatrix = 0;
|
||||
fBoundaryCondition = 0;
|
||||
fFieldDiffuse = 0;
|
||||
|
||||
f_dx = 0.02;
|
||||
f_dz = XiP_T(fTemp)*TMath::TwoPi()/PippardFourierPoints/f_dx; // see lab-book p.137, used for specular reflection boundary conditions (default)
|
||||
fShift = 0;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
PPippard::~PPippard()
|
||||
{
|
||||
if (fPlanPresent) {
|
||||
fftw_destroy_plan(fPlan);
|
||||
}
|
||||
if (fFieldq) {
|
||||
fftw_free(fFieldq);
|
||||
fFieldq = 0;
|
||||
}
|
||||
|
||||
if (fFieldB) {
|
||||
fftw_free(fFieldq);
|
||||
fFieldB = 0;
|
||||
}
|
||||
if (fSecondDerivativeMatrix) {
|
||||
delete fSecondDerivativeMatrix;
|
||||
fSecondDerivativeMatrix = 0;
|
||||
}
|
||||
if (fKernelMatrix) {
|
||||
delete fKernelMatrix;
|
||||
fKernelMatrix = 0;
|
||||
}
|
||||
if (fBoundaryCondition) {
|
||||
delete fBoundaryCondition;
|
||||
fBoundaryCondition = 0;
|
||||
}
|
||||
if (fFieldDiffuse) {
|
||||
delete fFieldDiffuse;
|
||||
fFieldDiffuse = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::GetMagneticField(const Double_t z) const
|
||||
{
|
||||
Double_t result = -1.0;
|
||||
|
||||
if (fSpecular) {
|
||||
|
||||
if (fFieldB == 0)
|
||||
return -1.0;
|
||||
|
||||
if (z < 0.0)
|
||||
return 1.0;
|
||||
|
||||
if (z > f_dz*PippardFourierPoints/2.0)
|
||||
return 0.0;
|
||||
|
||||
Int_t bin = (Int_t)(z/f_dz);
|
||||
|
||||
result = fFieldB[bin+fShift][1];
|
||||
|
||||
} else { // diffuse
|
||||
|
||||
if (fFieldDiffuse == 0)
|
||||
return -1.0;
|
||||
|
||||
if (z < 0.0)
|
||||
return 1.0;
|
||||
|
||||
if (z > PippardDiffusePoints * f_dz * XiP_T(fTemp))
|
||||
return 0.0;
|
||||
|
||||
Int_t bin = (Int_t)(z/(f_dz*XiP_T(fTemp)));
|
||||
|
||||
result = (*fFieldDiffuse)(bin);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::DeltaBCS(const Double_t t) const
|
||||
{
|
||||
Double_t result = 0.0;
|
||||
|
||||
// reduced temperature table
|
||||
Double_t tt[] = {1, 0.98, 0.96, 0.94, 0.92, 0.9, 0.88, 0.86, 0.84, 0.82,
|
||||
0.8, 0.78, 0.76, 0.74, 0.72, 0.7, 0.68, 0.66, 0.64, 0.62,
|
||||
0.6, 0.58, 0.56, 0.54, 0.52, 0.5, 0.48, 0.46, 0.44, 0.42,
|
||||
0.4, 0.38, 0.36, 0.34, 0.32, 0.3, 0.28, 0.26, 0.24, 0.22,
|
||||
0.2, 0.18, 0.16, 0.14};
|
||||
|
||||
// gap table from Muehlschlegel
|
||||
Double_t ee[] = {0, 0.2436, 0.3416, 0.4148, 0.4749, 0.5263, 0.5715, 0.6117,
|
||||
0.648, 0.681, 0.711, 0.7386, 0.764, 0.7874, 0.8089, 0.8288,
|
||||
0.8471, 0.864, 0.8796, 0.8939, 0.907, 0.919, 0.9299, 0.9399,
|
||||
0.9488, 0.9569, 0.9641, 0.9704, 0.976, 0.9809, 0.985, 0.9885,
|
||||
0.9915, 0.9938, 0.9957, 0.9971, 0.9982, 0.9989, 0.9994, 0.9997,
|
||||
0.9999, 1, 1, 1, 1};
|
||||
|
||||
if (t>1.0)
|
||||
result = 0.0;
|
||||
else if (t<0.14)
|
||||
result = 1.0;
|
||||
else {
|
||||
// find correct bin for t
|
||||
UInt_t i=0;
|
||||
for (i=0; i<sizeof(tt); i++) {
|
||||
if (tt[i]<=t) break;
|
||||
}
|
||||
// interpolate linear between 2 bins
|
||||
result = ee[i]-(tt[i]-t)*(ee[i]-ee[i-1])/(tt[i]-tt[i-1]);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::LambdaL_T(const Double_t t) const
|
||||
{
|
||||
return fLambdaL/sqrt(1.0-pow(t,4.0));
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Approximated xi_P(T). The main approximation is that (lamdaL(T)/lambdaL(0))^2 = 1/(1-t^2). This way
|
||||
* xi_P(T) is close the the BCS xi_BCS(T).
|
||||
*/
|
||||
Double_t PPippard::XiP_T(Double_t t) const
|
||||
{
|
||||
if (t>0.96)
|
||||
t=0.96;
|
||||
|
||||
Double_t J0T = DeltaBCS(t)/(1.0-pow(t,2.0)) * tanh(0.881925 * DeltaBCS(t) / t);
|
||||
|
||||
return fXi0*fMeanFreePath/(fMeanFreePath*J0T+fXi0);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
void PPippard::CalculateField()
|
||||
{
|
||||
// calculate the field
|
||||
if (fSpecular)
|
||||
CalculateFieldSpecular();
|
||||
else
|
||||
CalculateFieldDiffuse();
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
void PPippard::CalculateFieldSpecular()
|
||||
{
|
||||
// check if it is necessary to allocate memory
|
||||
if (fFieldq == 0) {
|
||||
fFieldq = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * PippardFourierPoints);
|
||||
if (fFieldq == 0) {
|
||||
cout << endl << "PPippard::CalculateField(): **ERROR** couldn't allocate memory for fFieldq";
|
||||
cout << endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (fFieldB == 0) {
|
||||
fFieldB = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * PippardFourierPoints);
|
||||
if (fFieldB == 0) {
|
||||
cout << endl << "PPippard::CalculateField(): **ERROR** couldn't allocate memory for fFieldB";
|
||||
cout << endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// calculate the prefactor of the reduced kernel
|
||||
Double_t xiP = XiP_T(fTemp);
|
||||
Double_t preFactor = pow(xiP/(LambdaL_T(fTemp)),2.0)*xiP/fXi0;
|
||||
|
||||
|
||||
// calculate the fFieldq vector, which is x/(x^2 + alpha k(x)), with alpha = xiP(T)^3/(lambdaL(T)^2 xiP(0)), and
|
||||
// k(x) = 3/2 [(1+x^2) arctan(x) - x]/x^3, see lab-book p.137
|
||||
Double_t x;
|
||||
fFieldq[0][0] = 0.0;
|
||||
fFieldq[0][1] = 0.0;
|
||||
for (Int_t i=1; i<PippardFourierPoints; i++) {
|
||||
x = i * f_dx;
|
||||
fFieldq[i][0] = x/(pow(x,2.0)+preFactor*(1.5*((1.0+pow(x,2.0))*atan(x)-x)/pow(x,3.0)));
|
||||
fFieldq[i][1] = 0.0;
|
||||
}
|
||||
|
||||
// Fourier transform
|
||||
if (!fPlanPresent) {
|
||||
fPlan = fftw_plan_dft_1d(PippardFourierPoints, fFieldq, fFieldB, FFTW_FORWARD, FFTW_ESTIMATE);
|
||||
fPlanPresent = true;
|
||||
}
|
||||
|
||||
fftw_execute(fPlan);
|
||||
|
||||
// normalize fFieldB
|
||||
Double_t norm = 0.0;
|
||||
fShift=0;
|
||||
for (Int_t i=0; i<PippardFourierPoints/2; i++) {
|
||||
if (fabs(fFieldB[i][1]) > fabs(norm)) {
|
||||
norm = fFieldB[i][1];
|
||||
fShift = i;
|
||||
}
|
||||
}
|
||||
|
||||
cout << endl << "fShift = " << fShift;
|
||||
|
||||
for (Int_t i=0; i<PippardFourierPoints; i++) {
|
||||
fFieldB[i][1] /= norm;
|
||||
}
|
||||
|
||||
if (fFilmThickness < PippardFourierPoints/2.0*f_dz) {
|
||||
// B(z) = b(z)+b(D-z)/(1+b(D)) is the B(z) result
|
||||
Int_t idx = (Int_t)(fFilmThickness/f_dz);
|
||||
norm = 1.0 + fFieldB[idx+fShift][1];
|
||||
for (Int_t i=0; i<PippardFourierPoints; i++) {
|
||||
fFieldB[i][0] = 0.0;
|
||||
}
|
||||
for (Int_t i=fShift; i<idx+fShift; i++) {
|
||||
fFieldB[i][0] = (fFieldB[i][1] + fFieldB[idx-i+2*fShift][1])/norm;
|
||||
}
|
||||
for (Int_t i=0; i<PippardFourierPoints; i++) {
|
||||
fFieldB[i][1] = fFieldB[i][0];
|
||||
}
|
||||
}
|
||||
|
||||
Double_t integral = 0.0;
|
||||
for (Int_t i=fShift; i<PippardFourierPoints/2; i++)
|
||||
integral += fFieldB[i][1];
|
||||
cout << endl << "specular Integral = " << integral*f_dz;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
void PPippard::CalculateFieldDiffuse()
|
||||
{
|
||||
f_dz = 5.0/XiP_T(fTemp);
|
||||
|
||||
Double_t invL = 1/f_dz;
|
||||
Double_t ampl = 1.0/pow(f_dz,2.0)/(3.0/4.0*pow(XiP_T(fTemp),3.0)/(fXi0*pow(LambdaL_T(fTemp),2.0)));
|
||||
|
||||
cout << endl << ">> 1/alpha = " << 1.0/(3.0/4.0*pow(XiP_T(fTemp),3.0)/(fXi0*pow(LambdaL_T(fTemp),2.0)));
|
||||
cout << endl << ">> 1/l^2 = " << 1.0/pow(f_dz,2.0);
|
||||
cout << endl << ">> ampl = " << ampl << endl;
|
||||
|
||||
// 2nd derivative matrix
|
||||
if (fSecondDerivativeMatrix == 0) { // first time call, hence generate the 2nd derivative matrix
|
||||
fSecondDerivativeMatrix = new MatrixXd(PippardDiffusePoints+1, PippardDiffusePoints+1);
|
||||
fSecondDerivativeMatrix->setZero(PippardDiffusePoints+1, PippardDiffusePoints+1);
|
||||
for (Int_t i=1; i<PippardDiffusePoints; i++) {
|
||||
(*fSecondDerivativeMatrix)(i,i-1) = ampl;
|
||||
(*fSecondDerivativeMatrix)(i,i) = -2.0*ampl;
|
||||
(*fSecondDerivativeMatrix)(i,i+1) = ampl;
|
||||
}
|
||||
}
|
||||
|
||||
//cout << endl << "fSecondDerivativeMatrix = \n" << *fSecondDerivativeMatrix << endl;
|
||||
|
||||
// kernel matrix
|
||||
if (fKernelMatrix == 0) { // first time call, hence generate the kernel matrix
|
||||
fKernelMatrix = new MatrixXd(PippardDiffusePoints+1, PippardDiffusePoints+1);
|
||||
fKernelMatrix->setZero(PippardDiffusePoints+1, PippardDiffusePoints+1);
|
||||
// 1st line (dealing with boundary conditions)
|
||||
(*fKernelMatrix)(0,0) = -1.5*invL;
|
||||
(*fKernelMatrix)(0,1) = 2.0*invL;
|
||||
(*fKernelMatrix)(0,2) = -0.5*invL;
|
||||
// Nth line (dealing with boundary conditions)
|
||||
(*fKernelMatrix)(PippardDiffusePoints,PippardDiffusePoints-2) = 0.5*invL;
|
||||
(*fKernelMatrix)(PippardDiffusePoints,PippardDiffusePoints-1) = -2.0*invL;
|
||||
(*fKernelMatrix)(PippardDiffusePoints,PippardDiffusePoints) = 1.5*invL;
|
||||
// the real kernel
|
||||
for (Int_t i=1; i<PippardDiffusePoints; i++) {
|
||||
(*fKernelMatrix)(i,0)=Calc_a(i);
|
||||
(*fKernelMatrix)(i,PippardDiffusePoints)=Calc_b(i);
|
||||
for (Int_t j=1; j<PippardDiffusePoints; j++) {
|
||||
(*fKernelMatrix)(i,j) = Calc_c(i,j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//cout << endl << "fKernelMatrix = \n" << *fKernelMatrix << endl;
|
||||
|
||||
// boundary condition vector
|
||||
if (fBoundaryCondition == 0) {
|
||||
fBoundaryCondition = new VectorXd(PippardDiffusePoints+1);
|
||||
fBoundaryCondition->setZero(PippardDiffusePoints+1);
|
||||
(*fBoundaryCondition)(0) = 1.0;
|
||||
}
|
||||
|
||||
//cout << endl << "fBoundaryCondition = " << *fBoundaryCondition << endl;
|
||||
|
||||
if (fFieldDiffuse == 0) {
|
||||
fFieldDiffuse = new VectorXd(PippardDiffusePoints+1);
|
||||
fFieldDiffuse->setZero(PippardDiffusePoints+1);
|
||||
}
|
||||
|
||||
// solve equation
|
||||
*fSecondDerivativeMatrix = (*fSecondDerivativeMatrix)-(*fKernelMatrix);
|
||||
fSecondDerivativeMatrix->lu().solve(*fBoundaryCondition, fFieldDiffuse);
|
||||
|
||||
// normalize field
|
||||
Double_t norm = 0.0;
|
||||
for (Int_t i=0; i<PippardDiffusePoints+1; i++)
|
||||
if (norm < (*fFieldDiffuse)(i))
|
||||
norm = (*fFieldDiffuse)(i);
|
||||
|
||||
for (Int_t i=0; i<PippardDiffusePoints+1; i++)
|
||||
(*fFieldDiffuse)(i) /= norm;
|
||||
|
||||
Double_t integral = 0.0;
|
||||
for (Int_t i=0; i<PippardDiffusePoints+1; i++)
|
||||
integral += (*fFieldDiffuse)(i);
|
||||
cout << endl << "Diffuse Integral = " << integral*f_dz*XiP_T(fTemp);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
void PPippard::SaveField(const char *fileName)
|
||||
{
|
||||
FILE *fp;
|
||||
|
||||
fp = fopen(fileName, "w");
|
||||
if (fp == NULL) {
|
||||
cout << endl << "Coudln't open " << fileName << " for writting, sorry ...";
|
||||
cout << endl << endl;
|
||||
return;
|
||||
}
|
||||
|
||||
// write header
|
||||
fprintf(fp, "%% Header ------------------------------------\n");
|
||||
fprintf(fp, "%% Parameters:\n");
|
||||
fprintf(fp, "%% Reduced Temperature = %lf\n", fTemp);
|
||||
fprintf(fp, "%% LambdaL(0) = %lf, LambdaL(t) = %lf\n", fLambdaL, LambdaL_T(fTemp));
|
||||
fprintf(fp, "%% xiP(0) = %lf, xiP(t) = %lf\n", fXi0, XiP_T(fTemp));
|
||||
fprintf(fp, "%% Mean Free Path = %lf\n", fMeanFreePath);
|
||||
if (fSpecular)
|
||||
fprintf(fp, "%% Boundary Conditions: Specular\n");
|
||||
else
|
||||
fprintf(fp, "%% Boundary Conditions: Diffuse\n");
|
||||
fprintf(fp, "%%\n");
|
||||
|
||||
// write data
|
||||
fprintf(fp, "%% Data --------------------------------------\n");
|
||||
fprintf(fp, "%% z (nm), B/B_0 \n");
|
||||
if (fSpecular) {
|
||||
for (Int_t i=0; i<PippardFourierPoints/2; i++) {
|
||||
fprintf(fp, "%lf, %lf\n", f_dz*(Double_t)i, fFieldB[i+fShift][1]);
|
||||
}
|
||||
} else {
|
||||
for (Int_t i=0; i<PippardDiffusePoints; i++) {
|
||||
fprintf(fp, "%lf, %lf\n", f_dz * XiP_T(fTemp) * (Double_t)i, (*fFieldDiffuse)(i));
|
||||
}
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::Calc_v(const Double_t s) const
|
||||
{
|
||||
if (s == 0.0)
|
||||
return 0.0;
|
||||
|
||||
Double_t s2 = pow(s,2.0);
|
||||
Double_t ss = fabs(s);
|
||||
Double_t v;
|
||||
|
||||
if (ss < 0.001) {
|
||||
v = (-0.0772157-log(ss))*ss+s2; // series expansion in s up to 2nd order
|
||||
} else {
|
||||
v = 1/6.0*(exp(-ss)*(s2-ss-4.0) + 4.0 - ss*(s2-6.0) * gsl_sf_gamma_inc(0.0, ss));
|
||||
}
|
||||
|
||||
if (s < 0)
|
||||
v = -v;
|
||||
|
||||
return v;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::Calc_w(const Double_t s) const
|
||||
{
|
||||
if (s == 0.0)
|
||||
return 0.0;
|
||||
|
||||
Double_t s2 = pow(s,2.0);
|
||||
Double_t ss = fabs(s);
|
||||
Double_t w;
|
||||
|
||||
if (ss < 0.001) {
|
||||
w = (0.211392 - 0.5*log(ss))*s2; // series expansion in s up to 2nd order
|
||||
} else {
|
||||
w = 1/24.0*(exp(-ss)*(6.0-10.0*ss-s2+ss*s2)+16.0*ss-6.0-s2*(s2-12.0)*gsl_sf_gamma_inc(0.0, ss));
|
||||
}
|
||||
|
||||
return w;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::Calc_a(const Int_t i) const
|
||||
{
|
||||
return -Calc_v(-i*f_dz) + (Calc_w((1-i)*f_dz)-Calc_w(-i*f_dz))/f_dz;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::Calc_b(const Int_t i) const
|
||||
{
|
||||
return Calc_v((PippardDiffusePoints-i)*f_dz) - (Calc_w((PippardDiffusePoints-i)*f_dz)-Calc_w((PippardDiffusePoints-1-i)*f_dz))/f_dz;
|
||||
}
|
||||
|
||||
//-----------------------------------------------------------------------------------------------------------
|
||||
/**
|
||||
*
|
||||
*/
|
||||
Double_t PPippard::Calc_c(const Int_t i, const Int_t j) const
|
||||
{
|
||||
return (Calc_w((i+1-j)*f_dz)-2.0*Calc_w((i-j)*f_dz)+Calc_w((i-1-j)*f_dz))/f_dz;
|
||||
}
|
77
src/tests/nonlocal/PPippard.h
Normal file
77
src/tests/nonlocal/PPippard.h
Normal file
@ -0,0 +1,77 @@
|
||||
// -----------------------------------------------------------------------
|
||||
// Author: Andreas Suter
|
||||
// $Id$
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#ifndef _PPIPPARD_H_
|
||||
#define _PPIPPARD_H_
|
||||
|
||||
#include <fftw3.h>
|
||||
|
||||
#include <Rtypes.h>
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/LU>
|
||||
using namespace Eigen;
|
||||
|
||||
const Int_t PippardFourierPoints = 200000;
|
||||
const Int_t PippardDiffusePoints = 500;
|
||||
|
||||
class PPippard
|
||||
{
|
||||
public:
|
||||
PPippard(Double_t temp, Double_t lambdaL, Double_t xi0, Double_t meanFreePath, Double_t filmThickness, Bool_t specular = true);
|
||||
virtual ~PPippard();
|
||||
|
||||
virtual void SetTemp(Double_t temp) { fTemp = temp; }
|
||||
virtual void SetLambdaL(Double_t lambdaL) { fLambdaL = lambdaL; }
|
||||
virtual void SetXi0(Double_t xi0) { fXi0 = xi0; }
|
||||
virtual void SetMeanFreePath(Double_t meanFreePath) { fMeanFreePath = meanFreePath; }
|
||||
virtual void SetFilmThickness(Double_t thickness) { fFilmThickness = thickness; }
|
||||
virtual void SetSpecular(Bool_t specular) { fSpecular = specular; }
|
||||
|
||||
virtual void CalculateField();
|
||||
|
||||
virtual Double_t GetMagneticField(const Double_t x) const;
|
||||
|
||||
virtual void SaveField(const char *fileName);
|
||||
|
||||
private:
|
||||
Double_t fTemp; // reduced temperature, i.e. t = T/T_c
|
||||
Double_t fLambdaL; // lambdaL in (nm)
|
||||
Double_t fXi0; // xi0 in (nm)
|
||||
Double_t fMeanFreePath; // mean free path in (nm)
|
||||
Double_t fFilmThickness; // film thickness in (nm)
|
||||
Bool_t fSpecular; // = 1 -> specular, 0 -> diffuse
|
||||
|
||||
Double_t f_dx; // dx = xiPT dq
|
||||
Double_t f_dz; // spatial step size
|
||||
|
||||
bool fPlanPresent;
|
||||
fftw_plan fPlan;
|
||||
fftw_complex *fFieldq; // (xiPT x)/(x^2 + xiPT^2 K(x,T)), x = q xiPT
|
||||
fftw_complex *fFieldB; // field calculated for specular boundary conditions
|
||||
|
||||
Int_t fShift; // shift needed to pick up fFieldB at the maximum for B->0
|
||||
|
||||
MatrixXd *fSecondDerivativeMatrix; // 2nd derivative matrix
|
||||
MatrixXd *fKernelMatrix; // kernel matrix
|
||||
VectorXd *fBoundaryCondition; // boundary condition vector
|
||||
VectorXd *fFieldDiffuse; // resulting B(z)/B(0) field
|
||||
|
||||
virtual Double_t DeltaBCS(const Double_t t) const;
|
||||
virtual Double_t LambdaL_T(const Double_t t) const;
|
||||
virtual Double_t XiP_T(Double_t t) const;
|
||||
|
||||
virtual void CalculateFieldSpecular();
|
||||
virtual void CalculateFieldDiffuse();
|
||||
|
||||
virtual Double_t Calc_v(const Double_t s) const; // see 'A.Suter, Memorandum June 17, 2004' Eq.(13)
|
||||
virtual Double_t Calc_w(const Double_t s) const; // see 'A.Suter, Memorandum June 17, 2004' Eq.(14)
|
||||
|
||||
virtual Double_t Calc_a(const Int_t i) const; // see 'A.Suter, Memorandum June 17, 2004' Eq.(17)
|
||||
virtual Double_t Calc_b(const Int_t i) const; // see 'A.Suter, Memorandum June 17, 2004' Eq.(17)
|
||||
virtual Double_t Calc_c(const Int_t i, const Int_t j) const; // see 'A.Suter, Memorandum June 17, 2004' Eq.(17)
|
||||
};
|
||||
|
||||
#endif // _PPIPPARD_H_
|
82
src/tests/nonlocal/nonlocal.cpp
Normal file
82
src/tests/nonlocal/nonlocal.cpp
Normal file
@ -0,0 +1,82 @@
|
||||
// -----------------------------------------------------------------------
|
||||
// Author: Andreas Suter
|
||||
// $Id$
|
||||
// -----------------------------------------------------------------------
|
||||
|
||||
#include <cstdlib>
|
||||
|
||||
#include <iostream>
|
||||
using namespace std;
|
||||
|
||||
#include "PPippard.h"
|
||||
|
||||
|
||||
void syntax()
|
||||
{
|
||||
cout << endl << "usage: nonlocal temp lambdaL xi0 meanFreePath filmThickness specular [<fileName>]";
|
||||
cout << endl << " temp : reduced temperature, i.e. t = T/T_c";
|
||||
cout << endl << " specular: 1 = specular, 0 = diffuse";
|
||||
cout << endl << " all lengths given in (nm)";
|
||||
cout << endl << " if <fileName> is given, the field profile will be saved";
|
||||
cout << endl << endl;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
if ((argc < 7) || (argc>8)){
|
||||
syntax();
|
||||
return 0;
|
||||
}
|
||||
|
||||
Double_t temp = strtod(argv[1], (char **)NULL);
|
||||
Double_t lambdaL = strtod(argv[2], (char **)NULL);
|
||||
Double_t xi0 = strtod(argv[3], (char **)NULL);
|
||||
Double_t meanFreePath = strtod(argv[4], (char **)NULL);
|
||||
Double_t filmThickness = strtod(argv[5], (char **)NULL);
|
||||
|
||||
char fln[1024];
|
||||
if (argc == 8) {
|
||||
strncpy(fln, argv[7], sizeof(fln));
|
||||
} else {
|
||||
strncpy(fln, "", sizeof(fln));
|
||||
}
|
||||
|
||||
|
||||
Bool_t specular;
|
||||
if (!strcmp(argv[6], "1"))
|
||||
specular = true;
|
||||
else if (!strcmp(argv[6], "0"))
|
||||
specular = false;
|
||||
else {
|
||||
syntax();
|
||||
return 0;
|
||||
}
|
||||
|
||||
cout << endl << ">> temp = " << temp;
|
||||
cout << endl << ">> lambdaL = " << lambdaL;
|
||||
cout << endl << ">> xi0 = " << xi0;
|
||||
cout << endl << ">> meanFreePath = " << meanFreePath;
|
||||
cout << endl << ">> filmThickness = " << filmThickness;
|
||||
if (specular)
|
||||
cout << endl << ">> specular = true";
|
||||
else
|
||||
cout << endl << ">> specular = false";
|
||||
cout << endl;
|
||||
|
||||
PPippard *pippard = new PPippard(temp, lambdaL, xi0, meanFreePath, filmThickness, specular);
|
||||
|
||||
pippard->CalculateField();
|
||||
|
||||
if (strlen(fln) > 0)
|
||||
pippard->SaveField(fln);
|
||||
|
||||
cout << endl << ">> magnetic field = " << pippard->GetMagneticField(0.0);
|
||||
cout << endl;
|
||||
|
||||
if (pippard) {
|
||||
delete pippard;
|
||||
pippard = 0;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
27
src/tests/nonlocal/test.C
Normal file
27
src/tests/nonlocal/test.C
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
|
||||
// reduced temperature table
|
||||
Double_t tt[] = {1, 0.98, 0.96, 0.94, 0.92, 0.9, 0.88, 0.86, 0.84, 0.82,
|
||||
0.8, 0.78, 0.76, 0.74, 0.72, 0.7, 0.68, 0.66, 0.64, 0.62,
|
||||
0.6, 0.58, 0.56, 0.54, 0.52, 0.5, 0.48, 0.46, 0.44, 0.42,
|
||||
0.4, 0.38, 0.36, 0.34, 0.32, 0.3, 0.28, 0.26, 0.24, 0.22,
|
||||
0.2, 0.18, 0.16, 0.14};
|
||||
|
||||
// gap table from Muehlschlegel
|
||||
Double_t ee[] = {0, 0.2436, 0.3416, 0.4148, 0.4749, 0.5263, 0.5715, 0.6117,
|
||||
0.648, 0.681, 0.711, 0.7386, 0.764, 0.7874, 0.8089, 0.8288,
|
||||
0.8471, 0.864, 0.8796, 0.8939, 0.907, 0.919, 0.9299, 0.9399,
|
||||
0.9488, 0.9569, 0.9641, 0.9704, 0.976, 0.9809, 0.985, 0.9885,
|
||||
0.9915, 0.9938, 0.9957, 0.9971, 0.9982, 0.9989, 0.9994, 0.9997,
|
||||
0.9999, 1, 1, 1, 1};
|
||||
|
||||
TF1 *userFunc = new TF1("User Func", "[0]*pow(1.0-pow(x,[1]),[2])", 0.0, 1.0);
|
||||
userFunc->SetParName(0, "A");
|
||||
userFunc->SetParName(1, "p1");
|
||||
userFunc->SetParName(2, "p2");
|
||||
|
||||
userFunc->SetParameters(1.0, 2.0, 0.5);
|
||||
|
||||
TGraph *gr = new TGraph(45, tt, ee);
|
||||
gr->Draw("ap");
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user