next step towards Fourier

This commit is contained in:
nemu 2008-12-23 16:24:26 +00:00
parent 4a832f6fe8
commit ce9f98c37d
9 changed files with 708 additions and 204 deletions

View File

@ -51,14 +51,9 @@ using namespace std;
/**
* <p>
*
* \dataType tag indicating if data is histogram, asymmetry, ...
* \data vector with the real data
*/
PFourier::PFourier(int dataType, TH1F *data,
double startTime, double endTime,
unsigned int zeroPaddingPower, bool estimateN0AndBkg) :
fDataType(dataType), fData(data),
fStartTime(startTime), fEndTime(endTime),
PFourier::PFourier(TH1F *data, int unitTag, double startTime, double endTime, unsigned int zeroPaddingPower) :
fData(data), fUnitTag(unitTag), fStartTime(startTime), fEndTime(endTime),
fZeroPaddingPower(zeroPaddingPower)
{
// some necessary checks and initialization
@ -68,31 +63,23 @@ PFourier::PFourier(int dataType, TH1F *data,
return;
}
if ((fStartTime < 0.0) || (fEndTime < 0.0)) {
cout << endl << "**ERROR** PFourier::PFourier: no valid start or end time." << endl << endl;
fValid = false;
return;
}
fValid = true;
fIn = 0;
fOut = 0;
fApodization = F_APODIZATION_NONE;
// calculate time resolution in (ns)
fTimeResolution = fData->GetBinWidth(1) * 1000.0;
// calculate time resolution in (us)
fTimeResolution = fData->GetBinWidth(1);
cout << endl << ">> fTimeResolution = " << fTimeResolution;
// if endTime == 0 set it to the last time slot
if (fEndTime == 0.0) {
int last = fData->GetNbinsX()-1;
fEndTime = fData->GetBinCenter(last);
} else {
fEndTime *= 1000.0; // us -> ns
//cout << endl << ">> fEndTime = " << fEndTime;
}
fStartTime *= 1000.0; // us -> ns
// swap start and end time if necessary
if (fStartTime > fEndTime) {
double keep = fStartTime;
@ -100,29 +87,49 @@ PFourier::PFourier(int dataType, TH1F *data,
fEndTime = keep;
}
cout << endl << "dB = " << 1.0/(2.0 * F_GAMMA_BAR_MUON * (fEndTime-fStartTime)) << " (G), Bmax = " << 1.0/(2.0 * F_GAMMA_BAR_MUON * fTimeResolution) << " (G)" << endl;
// try to estimate N0 and Bkg just out of the raw data
if (estimateN0AndBkg) {
EstimateN0AndBkg();
}
// calculate start and end bin
unsigned int start = (unsigned int)(fStartTime/fTimeResolution);
unsigned int end = (unsigned int)(fEndTime/fTimeResolution);
fNoOfData = end-start;
// check if zero padding is whished
//cout << endl << ">> fNoOfData = " << fNoOfData;
// check if zero padding is whished
if (fZeroPaddingPower > 0) {
fNoOfBins = static_cast<unsigned int>(pow(2.0, static_cast<double>(fZeroPaddingPower)));
} else {
fNoOfBins = fNoOfData;
}
cout << endl << ">> fNoOfBins = " << fNoOfBins;
// calculate fourier resolution
double resolution = 1.0/(fTimeResolution*fNoOfBins); // in MHz
switch (fUnitTag) {
case FOURIER_UNIT_FIELD:
fResolution = resolution/F_GAMMA_BAR_MUON;
break;
case FOURIER_UNIT_FREQ:
fResolution = resolution;
break;
case FOURIER_UNIT_CYCLES:
fResolution = 2.0*PI*resolution;
break;
default:
fValid = false;
return;
break;
}
cout << endl << ">> fResolution = " << fResolution;
// allocate necessary memory
fIn = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
fOut = (fftw_complex *)fftw_malloc(sizeof(fftw_complex)*fNoOfBins);
//cout << endl << ">> fIn = " << fIn;
//cout << endl << ">> fOut = " << fOut;
// check if memory allocation has been successful
if ((fIn == 0) || (fOut == 0)) {
fValid = false;
@ -134,6 +141,9 @@ cout << endl << "dB = " << 1.0/(2.0 * F_GAMMA_BAR_MUON * (fEndTime-fStartTime))
if (!fFFTwPlan) {
fValid = false;
}
//cout << endl;
}
//--------------------------------------------------------------------------
@ -159,18 +169,16 @@ cout << endl << "in ~PFourier() ..." << endl;
/**
* <p>
*
* \param apodizationTag 0=no apod., 1=weak apod., 2=medium apod., 3=strong apod., 4=user apod.
* \param apodizationTag 0=no apod., 1=weak apod., 2=medium apod., 3=strong apod.
*/
void PFourier::Transform(unsigned int apodizationTag)
{
if (!fValid)
return;
if (fDataType == F_SINGLE_HISTO) {
PrepareSingleHistoFFTwInputData(apodizationTag);
} else {
PrepareFFTwInputData(apodizationTag);
}
cout << endl << ">> PFourier::Transform ..." << endl;
PrepareFFTwInputData(apodizationTag);
fftw_execute(fFFTwPlan);
}
@ -181,34 +189,34 @@ void PFourier::Transform(unsigned int apodizationTag)
/**
* <p>
*
* \param realFourier
* \param scale
*/
void PFourier::GetRealFourier(TH1F *realFourier)
TH1F* PFourier::GetRealFourier(const double scale)
{
// check if valid flag is set
if (!fValid)
return;
return 0;
// reallocate realFourier
// invoke realFourier
char name[256];
char title[256];
strncpy(name, realFourier->GetName(), sizeof(name));
strncpy(title, realFourier->GetTitle(), sizeof(title));
if (realFourier) {
delete realFourier;
realFourier = 0;
}
realFourier = new TH1F(name, title, fNoOfBins, -fFieldResolution/2.0, fNoOfBins*fFieldResolution+fFieldResolution/2.0);
snprintf(name, sizeof(name), "%s_Fourier_Re", fData->GetName());
snprintf(title, sizeof(title), "%s_Fourier_Re", fData->GetTitle());
TH1F *realFourier = new TH1F(name, title, fNoOfBins/2, -fResolution/2.0, fNoOfBins/2.0*fResolution+fResolution/2.0);
if (realFourier == 0) {
fValid = false;
cout << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return;
return 0;
}
// fill realFourier vector
for (unsigned int i=0; i<fNoOfBins; i++) {
realFourier->SetBinContent(i+1, fOut[i][0]);
for (unsigned int i=0; i<fNoOfBins/2; i++) {
realFourier->SetBinContent(i+1, scale*fOut[i][0]);
realFourier->SetBinError(i+1, 0.0);
}
cout << endl << ">> realFourier = " << realFourier;
return realFourier;
}
//--------------------------------------------------------------------------
@ -217,125 +225,123 @@ void PFourier::GetRealFourier(TH1F *realFourier)
/**
* <p>
*
* \param imaginaryFourier
* \param scale
*/
void PFourier::GetImaginaryFourier(TH1F *imaginaryFourier)
TH1F* PFourier::GetImaginaryFourier(const double scale)
{
// check if valid flag is set
if (!fValid)
return;
return 0;
// reallocate imaginaryFourier
// invoke imaginaryFourier
char name[256];
char title[256];
strncpy(name, imaginaryFourier->GetName(), sizeof(name));
strncpy(title, imaginaryFourier->GetTitle(), sizeof(title));
if (imaginaryFourier) {
delete imaginaryFourier;
imaginaryFourier = 0;
}
imaginaryFourier = new TH1F(name, title, fNoOfBins, -fFieldResolution/2.0, fNoOfBins*fFieldResolution+fFieldResolution/2.0);
snprintf(name, sizeof(name), "%s_Fourier_Im", fData->GetName());
snprintf(title, sizeof(title), "%s_Fourier_Im", fData->GetTitle());
TH1F* imaginaryFourier = new TH1F(name, title, fNoOfBins/2, -fResolution/2.0, fNoOfBins/2.0*fResolution+fResolution/2.0);
if (imaginaryFourier == 0) {
fValid = false;
cout << endl << "**SEVERE ERROR** couldn't allocate memory for the imaginary part of the Fourier transform." << endl;
return;
return 0;
}
// fill imaginaryFourier vector
for (unsigned int i=0; i<fNoOfBins; i++) {
imaginaryFourier->SetBinContent(i+1, fOut[i][1]);
for (unsigned int i=0; i<fNoOfBins/2; i++) {
imaginaryFourier->SetBinContent(i+1, scale*fOut[i][1]);
imaginaryFourier->SetBinError(i+1, 0.0);
}
return imaginaryFourier;
}
//--------------------------------------------------------------------------
// EstimateN0AndBkg
// GetPowerFourier
//--------------------------------------------------------------------------
/**
* <p>
*
* \param scale
*/
void PFourier::EstimateN0AndBkg()
TH1F* PFourier::GetPowerFourier(const double scale)
{
int noOfBins = fData->GetNbinsX();
// check if valid flag is set
if (!fValid)
return 0;
TH1F summHisto("summHisto", "summHisto", noOfBins,
-fTimeResolution/2.0, (noOfBins-1)*fTimeResolution + fTimeResolution/2.0);
// invoke powerFourier
char name[256];
char title[256];
snprintf(name, sizeof(name), "%s_Fourier_Pwr", fData->GetName());
snprintf(title, sizeof(title), "%s_Fourier_Pwr", fData->GetTitle());
// fill summHisto
TH1F* pwrFourier = new TH1F(name, title, fNoOfBins/2, -fResolution/2.0, fNoOfBins/2.0*fResolution+fResolution/2.0);
if (pwrFourier == 0) {
fValid = false;
cout << endl << "**SEVERE ERROR** couldn't allocate memory for the power part of the Fourier transform." << endl;
return 0;
}
// fill powerFourier vector
for (unsigned int i=0; i<fNoOfBins/2; i++) {
pwrFourier->SetBinContent(i+1, scale*sqrt(fOut[i][0]*fOut[i][0]+fOut[i][1]*fOut[i][1]));
pwrFourier->SetBinError(i+1, 0.0);
}
return pwrFourier;
}
//--------------------------------------------------------------------------
// GetPhaseFourier
//--------------------------------------------------------------------------
/**
* <p>
*
* \param scale
*/
TH1F* PFourier::GetPhaseFourier(const double scale)
{
// check if valid flag is set
if (!fValid)
return 0;
// invoke phaseFourier
char name[256];
char title[256];
snprintf(name, sizeof(name), "%s_Fourier_Phase", fData->GetName());
snprintf(title, sizeof(title), "%s_Fourier_Phase", fData->GetTitle());
TH1F* phaseFourier = new TH1F(name, title, fNoOfBins/2, -fResolution/2.0, fNoOfBins/2.0*fResolution+fResolution/2.0);
if (phaseFourier == 0) {
fValid = false;
cout << endl << "**SEVERE ERROR** couldn't allocate memory for the phase part of the Fourier transform." << endl;
return 0;
}
// fill phaseFourier vector
double value = 0.0;
for (int i=1; i<noOfBins; i++) {
value += fData->GetBinContent(i);
summHisto.SetBinContent(i, value);
summHisto.SetBinError(i, sqrt(value));
for (unsigned int i=0; i<fNoOfBins/2; i++) {
// calculate the phase
if (fOut[i][0] == 0) {
if (fOut[i][1] >= 0.0)
value = PI_HALF;
else
value = -PI_HALF;
} else {
value = atan(fOut[i][1]/fOut[i][0]);
// check sector
if (fOut[i][0] < 0.0) {
if (fOut[i][1] > 0.0)
value = PI + value;
else
value = PI - value;
}
}
phaseFourier->SetBinContent(i+1, scale*value);
phaseFourier->SetBinError(i+1, 0.0);
}
cout << endl << ">> max.summHisto=" << summHisto.GetBinContent(noOfBins-1) << endl << endl;
// define fit function
TF1 *func = new TF1("func", "[0]*(1-TMath::Exp(-x/[1]))+[2]*x",
-fTimeResolution/2.0, (noOfBins-1)*fTimeResolution +
fTimeResolution/2.0);
// parameter 0 ~ N0 tau
func->SetParameter(0, summHisto.GetBinContent(noOfBins-1));
// parameter 1 == tau
func->FixParameter(1, PMUON_LIFETIME*1000.0);
// parameter 2 ~ <Bkg>
func->SetParameter(2, summHisto.GetBinContent(noOfBins-1)/(PMUON_LIFETIME*1000.0)*0.05);
// do the fit
summHisto.Fit(func, "0QR"); // 0->no Graph, Q->quite, R->time range from function
// get out the parameters
double A = func->GetParameter(0);
double B = func->GetParameter(2);
cout << endl << ">> A=" << A << ", B=" << B;
cout << endl << ">> N0/per bin=" << A/(PMUON_LIFETIME*1000.0)*fTimeResolution << ", <Bkg> per bin=" << B*fTimeResolution << endl << endl;
fN0 = A/(PMUON_LIFETIME*1000.0)*fTimeResolution;
fBkg = B*fTimeResolution;
// clean up
if (func) {
delete func;
func = 0;
}
}
//--------------------------------------------------------------------------
// PrepareSingleHistoFFTwInputData
//--------------------------------------------------------------------------
/**
* <p>
*
*/
void PFourier::PrepareSingleHistoFFTwInputData(unsigned int apodizationTag)
{
// 1st fill fIn
unsigned int start = (unsigned int)(fStartTime/fTimeResolution);
for (unsigned int i=0; i<fNoOfData-start; i++) {
fIn[i][0] = fData->GetBinContent(i+start+1);
fIn[i][1] = 0.0;
}
for (unsigned int i=fNoOfData; i<fNoOfBins; i++) {
fIn[i][0] = 0.0;
fIn[i][1] = 0.0;
}
// 2nd subtract the Bkg from the data
for (unsigned int i=0; i<fNoOfData; i++)
fIn[i][0] -= fBkg;
// 3rd remove the lifetime term
for (unsigned int i=0; i<fNoOfData; i++)
fIn[i][0] *= exp((start+i)*fTimeResolution/(PMUON_LIFETIME*1000.0));
// 4th remove the constant N0 term
for (unsigned int i=0; i<fNoOfData; i++)
fIn[i][0] -= fN0;
// 5th apodize data (if wished)
ApodizeData(apodizationTag);
return phaseFourier;
}
//--------------------------------------------------------------------------
@ -347,8 +353,17 @@ void PFourier::PrepareSingleHistoFFTwInputData(unsigned int apodizationTag)
*/
void PFourier::PrepareFFTwInputData(unsigned int apodizationTag)
{
// 1st fill fIn
unsigned int start = (unsigned int)(fStartTime/fTimeResolution);
// 1st find t==0. fData start at times t<0!!
int t0bin = -1;
for (int i=0; i<fData->GetNbinsX(); i++) {
if (fData->GetBinCenter(i) >= 0.0) {
t0bin = i;
break;
}
}
// 2nd fill fIn
unsigned int start = (unsigned int)(fStartTime/fTimeResolution) + t0bin;
for (unsigned int i=0; i<fNoOfData-start; i++) {
fIn[i][0] = fData->GetBinContent(i+start+1);
fIn[i][1] = 0.0;
@ -358,7 +373,7 @@ void PFourier::PrepareFFTwInputData(unsigned int apodizationTag)
fIn[i][1] = 0.0;
}
// 2nd apodize data (if wished)
// 3rd apodize data (if wished)
ApodizeData(apodizationTag);
}

View File

@ -689,7 +689,7 @@ int PMsrHandler::WriteMsrLogFile()
}
// write 'fourier_power' parameter if present
if (fFourier.fFourierPower != 0) {
if (fFourier.fFourierPower >= 0) {
f << endl << "fourier_power " << fFourier.fFourierPower;
CheckAndWriteComment(f, ++lineNo);
}
@ -1800,14 +1800,14 @@ bool PMsrHandler::HandleCommandsEntry(PMsrLines &lines)
void PMsrHandler::InitFourierParameterStructure(PMsrFourierStructure &fourier)
{
fourier.fFourierBlockPresent = false; // fourier block present
fourier.fUnits = FOURIER_UNIT_NOT_GIVEN; // fourier untis in field, i.e. Gauss
fourier.fFourierPower = 0; // no zero padding
fourier.fApodization = FOURIER_APOD_NOT_GIVEN; // no apodization
fourier.fPlotTag = FOURIER_PLOT_NOT_GIVEN; // initial plot tag: show real and imaginary part at once
fourier.fPhase = -999.0; // fourier phase
fourier.fUnits = FOURIER_UNIT_NOT_GIVEN; // fourier untis, default: NOT GIVEN
fourier.fFourierPower = -1; // zero padding, default: -1 = NOT GIVEN
fourier.fApodization = FOURIER_APOD_NOT_GIVEN; // apodization, default: NOT GIVEN
fourier.fPlotTag = FOURIER_PLOT_NOT_GIVEN; // initial plot tag, default: NOT GIVEN
fourier.fPhase = -999.0; // fourier phase: -999 = NOT GIVEN
for (unsigned int i=0; i<2; i++) {
fourier.fRangeForPhaseCorrection[i] = -1.0; // frequency range for phase correction
fourier.fPlotRange[i] = -1.0; // fourier plot range
fourier.fRangeForPhaseCorrection[i] = -1.0; // frequency range for phase correction, default: {-1, -1} = NOT GIVEN
fourier.fPlotRange[i] = -1.0; // fourier plot range, default: {-1, -1} = NOT GIVEN
}
}

View File

@ -39,6 +39,7 @@ using namespace std;
#include <TObjString.h>
#include "PMusrCanvas.h"
#include "PFourier.h"
ClassImpQ(PMusrCanvas)
@ -68,6 +69,8 @@ PMusrCanvas::PMusrCanvas()
fDataTheoryPad = 0;
fParameterTheoryPad = 0;
fInfoPad = 0;
InitFourier();
}
//--------------------------------------------------------------------------
@ -80,6 +83,7 @@ PMusrCanvas::PMusrCanvas(const int number, const char* title,
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh) :
fPlotNumber(number)
{
InitFourier();
CreateStyle();
InitMusrCanvas(title, wtopx, wtopy, ww, wh);
}
@ -92,7 +96,7 @@ PMusrCanvas::PMusrCanvas(const int number, const char* title,
*/
PMusrCanvas::PMusrCanvas(const int number, const char* title,
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh,
PMsrFourierStructure* fourierDefault,
PMsrFourierStructure fourierDefault,
const PIntVector markerList, const PIntVector colorList) :
fPlotNumber(number), fFourier(fourierDefault),
fMarkerList(markerList), fColorList(colorList)
@ -150,6 +154,68 @@ cout << "~PMusrCanvas() called. fMainCanvas name=" << fMainCanvas->GetName() <<
}
}
//--------------------------------------------------------------------------
// InitFourier
//--------------------------------------------------------------------------
/**
* <p>Initializes the Fourier structure.
*/
void PMusrCanvas::InitFourier()
{
fFourier.fFourierBlockPresent = false; // fourier block present
fFourier.fUnits = FOURIER_UNIT_FIELD; // fourier untis
fFourier.fFourierPower = 0; // no zero padding
fFourier.fApodization = FOURIER_APOD_NONE; // no apodization
fFourier.fPlotTag = FOURIER_PLOT_REAL_AND_IMAG; // initial plot tag, plot real and imaginary part
fFourier.fPhase = 0.0; // fourier phase 0°
for (unsigned int i=0; i<2; i++) {
fFourier.fRangeForPhaseCorrection[i] = -1.0; // frequency range for phase correction, default: {-1, -1} = NOT GIVEN
fFourier.fPlotRange[i] = -1.0; // fourier plot range, default: {-1, -1} = NOT GIVEN
}
fFourier.fPhaseIncrement = 1.0; // fourier phase increment
}
//--------------------------------------------------------------------------
// SetMsrHandler
//--------------------------------------------------------------------------
/**
* <p>Keep the msr-handler object pointer and fill the Fourier structure if present.
*/
void PMusrCanvas::SetMsrHandler(PMsrHandler *msrHandler)
{
fMsrHandler = msrHandler;
// check if a fourier block is present in the msr-file, and if yes extract the given values
if (fMsrHandler->GetMsrFourierList().fFourierBlockPresent) {
fFourier.fFourierBlockPresent = true;
if (fMsrHandler->GetMsrFourierList().fUnits != FOURIER_UNIT_NOT_GIVEN) {
fFourier.fUnits = fMsrHandler->GetMsrFourierList().fUnits;
}
if (fMsrHandler->GetMsrFourierList().fFourierPower != -1) {
fFourier.fFourierPower = fMsrHandler->GetMsrFourierList().fFourierPower;
}
if (fMsrHandler->GetMsrFourierList().fApodization != FOURIER_APOD_NOT_GIVEN) {
fFourier.fApodization = fMsrHandler->GetMsrFourierList().fApodization;
}
if (fMsrHandler->GetMsrFourierList().fPlotTag != FOURIER_PLOT_NOT_GIVEN) {
fFourier.fPlotTag = fMsrHandler->GetMsrFourierList().fPlotTag;
}
if (fMsrHandler->GetMsrFourierList().fPhase != -999.0) {
fFourier.fPhase = fMsrHandler->GetMsrFourierList().fPhase;
}
if ((fMsrHandler->GetMsrFourierList().fRangeForPhaseCorrection[0] != -1.0) &&
(fMsrHandler->GetMsrFourierList().fRangeForPhaseCorrection[1] != -1.0)) {
fFourier.fRangeForPhaseCorrection[0] = fMsrHandler->GetMsrFourierList().fRangeForPhaseCorrection[0];
fFourier.fRangeForPhaseCorrection[1] = fMsrHandler->GetMsrFourierList().fRangeForPhaseCorrection[1];
}
if ((fMsrHandler->GetMsrFourierList().fPlotRange[0] != -1.0) &&
(fMsrHandler->GetMsrFourierList().fPlotRange[1] != -1.0)) {
fFourier.fPlotRange[0] = fMsrHandler->GetMsrFourierList().fPlotRange[0];
fFourier.fPlotRange[1] = fMsrHandler->GetMsrFourierList().fPlotRange[1];
}
}
}
//--------------------------------------------------------------------------
// CreateStyle
//--------------------------------------------------------------------------
@ -334,9 +400,9 @@ void PMusrCanvas::HandleCmdKey(Int_t event, Int_t x, Int_t y, TObject *selected)
cout << endl << ">> will show the Fourier transform, to be implemented yet." << endl;
}
} else if (x == '+') {
cout << endl << ">> if Fourier is shown, will add " << fFourier->fPhaseIncerement << "° to the Fourier." << endl;
cout << endl << ">> if Fourier is shown, will add " << fFourier.fPhaseIncrement << "° to the Fourier." << endl;
} else if (x == '-') {
cout << endl << ">> if Fourier is shown, will subtract " << fFourier->fPhaseIncerement << "° to the Fourier." << endl;
cout << endl << ">> if Fourier is shown, will subtract " << fFourier.fPhaseIncrement << "° to the Fourier." << endl;
} else {
// do all the necessary stuff **TO BE DONE**
fMainCanvas->Update();
@ -373,9 +439,9 @@ void PMusrCanvas::HandleMenuPopup(Int_t id)
fPopupFourier->CheckEntry(id);
HandleFourier(FOURIER_PLOT_PHASE);
} else if (id == P_MENU_ID_FOURIER+P_MENU_PLOT_OFFSET*fPlotNumber+P_MENU_ID_FOURIER_PHASE_PLUS) {
cout << endl << ">> will add +1° Phase to the Fourier ..." << endl;
cout << endl << ">> will add " << fFourier.fPhaseIncrement << "° Phase to the Fourier ..." << endl;
} else if (id == P_MENU_ID_FOURIER+P_MENU_PLOT_OFFSET*fPlotNumber+P_MENU_ID_FOURIER_PHASE_MINUS) {
cout << endl << ">> will add -1° Phase to the Fourier ..." << endl;
cout << endl << ">> will subtract " << fFourier.fPhaseIncrement << "° Phase to the Fourier ..." << endl;
} else if (id == P_MENU_ID_DIFFERENCE+P_MENU_PLOT_OFFSET*fPlotNumber) {
if (fPopupMain->IsEntryChecked(id))
fPopupMain->UnCheckEntry(id);
@ -1124,7 +1190,7 @@ void PMusrCanvas::HandleDifference()
for (unsigned int i=0; i<fData.size(); i++) {
// create difference histos
name = TString(fData[i].data->GetTitle()) + "_diff";
cout << endl << ">> diff-name = " << name.Data() << endl;
//cout << endl << ">> diff-name = " << name.Data() << endl;
diffHisto = new TH1F(name, name, fData[i].data->GetNbinsX(),
fData[i].data->GetXaxis()->GetXmin(),
fData[i].data->GetXaxis()->GetXmax());
@ -1174,7 +1240,7 @@ cout << endl << ">> diff-name = " << name.Data() << endl;
// create difference histos
name = TString(fNonMusrData[i].data->GetTitle()) + "_diff";
cout << endl << ">> diff-name = " << name.Data() << endl;
//cout << endl << ">> diff-name = " << name.Data() << endl;
diffHisto->SetNameTitle(name.Data(), name.Data());
// set marker and line color
@ -1305,6 +1371,54 @@ Int_t PMusrCanvas::FindBin(const double x, TGraphErrors *graph)
return bin;
}
//--------------------------------------------------------------------------
// GetGlobalMaximum
//--------------------------------------------------------------------------
/**
* <p>returns the global maximum of a histogram
*
* \param histo
*/
double PMusrCanvas::GetGlobalMaximum(TH1F* histo)
{
if (histo == 0)
return 0.0;
double max = histo->GetBinContent(1);
double binContent;
for (int i=2; i < histo->GetNbinsX(); i++) {
binContent = histo->GetBinContent(i);
if (max < binContent)
max = binContent;
}
return max;
}
//--------------------------------------------------------------------------
// GetGlobalMinimum
//--------------------------------------------------------------------------
/**
* <p>returns the global minimum of a histogram
*
* \param histo
*/
double PMusrCanvas::GetGlobalMinimum(TH1F* histo)
{
if (histo == 0)
return 0.0;
double min = histo->GetBinContent(1);
double binContent;
for (int i=2; i < histo->GetNbinsX(); i++) {
binContent = histo->GetBinContent(i);
if (min > binContent)
min = binContent;
}
return min;
}
//--------------------------------------------------------------------------
// PlotData
//--------------------------------------------------------------------------
@ -1457,10 +1571,225 @@ cout << endl << ">> going to plot diff spectra ... (" << fData[0].diff->GetNbins
/**
* <p>
*
* \param fourierType flag showing if real-, imaginary-, power-, or phase-spectra are wished
*/
void PMusrCanvas::PlotFourier(int fourierType)
void PMusrCanvas::PlotFourier()
{
cout << endl << ">> in PlotFourier() ..." << endl;
fDataTheoryPad->cd();
if (fPlotType < 0) // plot type not defined
return;
if (fData.size() == 0) // no data to be plotted
return;
// define x-axis title
TString xAxisTitle("");
if (fFourier.fUnits == FOURIER_UNIT_FIELD) {
xAxisTitle = TString("Field (G)");
} else if (fFourier.fUnits == FOURIER_UNIT_FREQ) {
xAxisTitle = TString("Frequency (MHz)");
} else if (fFourier.fUnits == FOURIER_UNIT_CYCLES) {
xAxisTitle = TString("Frequency (Mc/s)");
} else {
xAxisTitle = TString("??");
}
// plot data
double min, max, binContent;
switch (fCurrentPlotView) {
case PV_FOURIER_REAL:
//cout << endl << ">> fData[0].dataFourierRe->GetNbinsX() = " << fData[0].dataFourierRe->GetNbinsX();
// plot first histo
fData[0].dataFourierRe->Draw("pe");
// set x-range
//cout << endl << ">> fPlotRange = " << fFourier.fPlotRange[0] << ", " << fFourier.fPlotRange[1];
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
min = fFourier.fPlotRange[0];
max = fFourier.fPlotRange[1];
} else {
min = fData[0].dataFourierRe->GetBinLowEdge(1);
max = fData[0].dataFourierRe->GetBinLowEdge(fData[0].dataFourierRe->GetNbinsX())+fData[0].dataFourierRe->GetBinWidth(1);
}
//cout << endl << ">> x-range: min, max = " << min << ", " << max;
fData[0].dataFourierRe->GetXaxis()->SetRangeUser(min, max);
// set y-range
// first find minimum/maximum of all histos
min = GetGlobalMinimum(fData[0].dataFourierRe);
max = GetGlobalMaximum(fData[0].dataFourierRe);
//cout << endl << ">> y-range: min, max = " << min << ", " << max;
for (unsigned int i=1; i<fData.size(); i++) {
binContent = GetGlobalMinimum(fData[i].dataFourierRe);
if (binContent < min)
min = binContent;
binContent = GetGlobalMaximum(fData[i].dataFourierRe);
if (binContent > max)
max = binContent;
}
fData[0].dataFourierRe->GetYaxis()->SetRangeUser(1.05*min, 1.05*max);
//cout << endl << "-> min, max = " << min << ", " << max;
// set x-axis title
fData[0].dataFourierRe->GetXaxis()->SetTitle(xAxisTitle.Data());
// set y-axis title
fData[0].dataFourierRe->GetYaxis()->SetTitle("Real Fourier");
// plot all remaining data
for (unsigned int i=1; i<fData.size(); i++) {
fData[i].dataFourierRe->Draw("pesame");
}
// plot theories
for (unsigned int i=0; i<fData.size(); i++) {
fData[i].theoryFourierRe->Draw("esame");
}
break;
case PV_FOURIER_IMAG:
// plot first histo
fData[0].dataFourierIm->Draw("pe");
// set x-range
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
min = fFourier.fPlotRange[0];
max = fFourier.fPlotRange[1];
} else {
min = fData[0].dataFourierIm->GetBinLowEdge(1);
max = fData[0].dataFourierIm->GetBinLowEdge(fData[0].dataFourierIm->GetNbinsX())+fData[0].dataFourierIm->GetBinWidth(1);
}
fData[0].dataFourierIm->GetXaxis()->SetRangeUser(min, max);
// set y-range
// first find minimum/maximum of all histos
min = GetGlobalMinimum(fData[0].dataFourierIm);
max = GetGlobalMaximum(fData[0].dataFourierIm);
for (unsigned int i=1; i<fData.size(); i++) {
binContent = GetGlobalMinimum(fData[i].dataFourierIm);
if (binContent < min)
min = binContent;
binContent = GetGlobalMaximum(fData[i].dataFourierIm);
if (binContent > max)
max = binContent;
}
fData[0].dataFourierIm->GetYaxis()->SetRangeUser(1.05*min, 1.05*max);
// set x-axis title
fData[0].dataFourierIm->GetXaxis()->SetTitle(xAxisTitle.Data());
// set y-axis title
fData[0].dataFourierIm->GetYaxis()->SetTitle("Imaginary Fourier");
// plot all remaining data
for (unsigned int i=1; i<fData.size(); i++) {
fData[i].dataFourierIm->Draw("pesame");
}
// plot theories
for (unsigned int i=0; i<fData.size(); i++) {
fData[i].theoryFourierIm->Draw("esame");
}
break;
case PV_FOURIER_REAL_AND_IMAG:
break;
case PV_FOURIER_PWR:
// plot first histo
fData[0].dataFourierPwr->Draw("pe");
// set x-range
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
min = fFourier.fPlotRange[0];
max = fFourier.fPlotRange[1];
} else {
min = fData[0].dataFourierPwr->GetBinLowEdge(1);
max = fData[0].dataFourierPwr->GetBinLowEdge(fData[0].dataFourierPwr->GetNbinsX())+fData[0].dataFourierPwr->GetBinWidth(1);
}
fData[0].dataFourierPwr->GetXaxis()->SetRangeUser(min, max);
// set y-range
// first find minimum/maximum of all histos
min = GetGlobalMinimum(fData[0].dataFourierPwr);
max = GetGlobalMaximum(fData[0].dataFourierPwr);
for (unsigned int i=1; i<fData.size(); i++) {
binContent = GetGlobalMinimum(fData[i].dataFourierPwr);
if (binContent < min)
min = binContent;
binContent = GetGlobalMaximum(fData[i].dataFourierPwr);
if (binContent > max)
max = binContent;
}
fData[0].dataFourierPwr->GetYaxis()->SetRangeUser(1.05*min, 1.05*max);
// set x-axis title
fData[0].dataFourierPwr->GetXaxis()->SetTitle(xAxisTitle.Data());
// set y-axis title
fData[0].dataFourierPwr->GetYaxis()->SetTitle("Power Fourier");
// plot all remaining data
for (unsigned int i=1; i<fData.size(); i++) {
fData[i].dataFourierPwr->Draw("pesame");
}
// plot theories
for (unsigned int i=0; i<fData.size(); i++) {
fData[i].theoryFourierPwr->Draw("esame");
}
break;
case PV_FOURIER_PHASE:
// plot first histo
fData[0].dataFourierPhase->Draw("pe");
// set x-range
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
min = fFourier.fPlotRange[0];
max = fFourier.fPlotRange[1];
} else {
min = fData[0].dataFourierPhase->GetBinLowEdge(1);
max = fData[0].dataFourierPhase->GetBinLowEdge(fData[0].dataFourierPhase->GetNbinsX())+fData[0].dataFourierPhase->GetBinWidth(1);
}
fData[0].dataFourierPhase->GetXaxis()->SetRangeUser(min, max);
// set y-range
// first find minimum/maximum of all histos
min = GetGlobalMinimum(fData[0].dataFourierPhase);
max = GetGlobalMaximum(fData[0].dataFourierPhase);
for (unsigned int i=1; i<fData.size(); i++) {
binContent = GetGlobalMinimum(fData[i].dataFourierPhase);
if (binContent < min)
min = binContent;
binContent = GetGlobalMaximum(fData[i].dataFourierPhase);
if (binContent > max)
max = binContent;
}
fData[0].dataFourierPhase->GetYaxis()->SetRangeUser(1.05*min, 1.05*max);
// set x-axis title
fData[0].dataFourierPhase->GetXaxis()->SetTitle(xAxisTitle.Data());
// set y-axis title
fData[0].dataFourierPhase->GetYaxis()->SetTitle("Phase Fourier");
// plot all remaining data
for (unsigned int i=1; i<fData.size(); i++) {
fData[i].dataFourierPhase->Draw("pesame");
}
// plot theories
for (unsigned int i=0; i<fData.size(); i++) {
fData[i].theoryFourierPhase->Draw("esame");
}
break;
default:
break;
}
fDataTheoryPad->Update();
fMainCanvas->cd();
fMainCanvas->Update();
}
//--------------------------------------------------------------------------
@ -2008,32 +2337,198 @@ void PMusrCanvas::SaveDataDb()
*/
void PMusrCanvas::HandleFourier(int tag)
{
if (fMsrHandler->GetMsrFourierList()->fFourierBlockPresent) {
cout << endl << ">> fourier block in msr-file present" << endl;
fFourier = fMsrHandler->GetMsrFourierList();
}
// if fourier was invoked via the 'f' cmd key, take the default plot tag
if (tag == -1) { // called via cmd key 'f'
tag = fFourier->fPlotTag;
tag = fFourier.fPlotTag;
}
// if the current view is a data plot, fourier needs to be calculated
if (fCurrentPlotView == PV_DATA) {
if (!fDifferenceView) { // data view
// delete fourier components
for (unsigned int i=0; i<fData.size(); i++) {
if (fData[i].dataFourierRe != 0) {
delete fData[i].dataFourierRe;
fData[i].dataFourierRe = 0;
}
if (fData[i].dataFourierIm != 0) {
delete fData[i].dataFourierIm;
fData[i].dataFourierIm = 0;
}
if (fData[i].dataFourierPwr != 0) {
delete fData[i].dataFourierPwr;
fData[i].dataFourierPwr = 0;
}
if (fData[i].dataFourierPhase != 0) {
delete fData[i].dataFourierPhase;
fData[i].dataFourierPhase = 0;
}
if (fData[i].theoryFourierRe != 0) {
delete fData[i].theoryFourierRe;
fData[i].theoryFourierRe = 0;
}
if (fData[i].theoryFourierIm != 0) {
delete fData[i].theoryFourierIm;
fData[i].theoryFourierIm = 0;
}
if (fData[i].theoryFourierPwr != 0) {
delete fData[i].theoryFourierPwr;
fData[i].theoryFourierPwr = 0;
}
if (fData[i].theoryFourierPhase != 0) {
delete fData[i].theoryFourierPhase;
fData[i].theoryFourierPhase = 0;
}
}
int bin;
bin = fData[0].data->GetXaxis()->GetFirst();
double startTime = fData[0].data->GetBinCenter(bin);
bin = fData[0].data->GetXaxis()->GetLast();
double endTime = fData[0].data->GetBinCenter(bin);
//cout << endl << ">> startTime = " << startTime << ", endTime = " << endTime << endl;
for (unsigned int i=0; i<fData.size(); i++) {
// calculate fourier transform of the data
PFourier fourierData(fData[i].data, fFourier.fUnits, startTime, endTime, fFourier.fFourierPower);
if (!fourierData.IsValid()) {
cout << endl << "**SEVERE ERROR** PMusrCanvas::HandleFourier: couldn't invoke PFourier to calculate the Fourier data ..." << endl;
return;
}
fourierData.Transform(fFourier.fApodization);
double scale;
scale = sqrt(fData[0].data->GetBinWidth(1)/(endTime-startTime));
cout << endl << ">> data scale = " << scale;
// get real part of the data
fData[i].dataFourierRe = fourierData.GetRealFourier(scale);
//cout << endl << ">> i: " << i << ", fData[i].dataFourierRe = " << fData[i].dataFourierRe;
// get imaginary part of the data
fData[i].dataFourierIm = fourierData.GetImaginaryFourier(scale);
// get power part of the data
fData[i].dataFourierPwr = fourierData.GetPowerFourier(scale);
// get phase part of the data
fData[i].dataFourierPhase = fourierData.GetPhaseFourier();
// set marker and line color
if (i < fColorList.size()) {
fData[i].dataFourierRe->SetMarkerColor(fColorList[i]);
fData[i].dataFourierRe->SetLineColor(fColorList[i]);
fData[i].dataFourierIm->SetMarkerColor(fColorList[i]);
fData[i].dataFourierIm->SetLineColor(fColorList[i]);
fData[i].dataFourierPwr->SetMarkerColor(fColorList[i]);
fData[i].dataFourierPwr->SetLineColor(fColorList[i]);
fData[i].dataFourierPhase->SetMarkerColor(fColorList[i]);
fData[i].dataFourierPhase->SetLineColor(fColorList[i]);
} else {
TRandom rand(i);
Int_t color = TColor::GetColor((Int_t)rand.Integer(255), (Int_t)rand.Integer(255), (Int_t)rand.Integer(255));
fData[i].dataFourierRe->SetMarkerColor(color);
fData[i].dataFourierRe->SetLineColor(color);
fData[i].dataFourierIm->SetMarkerColor(color);
fData[i].dataFourierIm->SetLineColor(color);
fData[i].dataFourierPwr->SetMarkerColor(color);
fData[i].dataFourierPwr->SetLineColor(color);
fData[i].dataFourierPhase->SetMarkerColor(color);
fData[i].dataFourierPhase->SetLineColor(color);
}
// set marker size
fData[i].dataFourierRe->SetMarkerSize(1);
fData[i].dataFourierIm->SetMarkerSize(1);
fData[i].dataFourierPwr->SetMarkerSize(1);
fData[i].dataFourierPhase->SetMarkerSize(1);
// set marker type
if (i < fMarkerList.size()) {
fData[i].dataFourierRe->SetMarkerStyle(fMarkerList[i]);
fData[i].dataFourierIm->SetMarkerStyle(fMarkerList[i]);
fData[i].dataFourierPwr->SetMarkerStyle(fMarkerList[i]);
fData[i].dataFourierPhase->SetMarkerStyle(fMarkerList[i]);
} else {
TRandom rand(i);
int marker = 20+(Int_t)rand.Integer(10);
fData[i].dataFourierRe->SetMarkerStyle(marker);
fData[i].dataFourierIm->SetMarkerStyle(marker);
fData[i].dataFourierPwr->SetMarkerStyle(marker);
fData[i].dataFourierPhase->SetMarkerStyle(marker);
}
// calculate fourier transform of the theory
int powerPad = (int)round(log((endTime-startTime)/fData[i].theory->GetBinWidth(1))/log(2))+3;
cout << endl << ">> powerPad = " << powerPad;
PFourier fourierTheory(fData[i].theory, fFourier.fUnits, startTime, endTime, powerPad);
if (!fourierTheory.IsValid()) {
cout << endl << "**SEVERE ERROR** PMusrCanvas::HandleFourier: couldn't invoke PFourier to calculate the Fourier theory ..." << endl;
return;
}
fourierTheory.Transform(fFourier.fApodization);
scale = sqrt(fData[0].theory->GetBinWidth(1)/(endTime-startTime)*fData[0].theory->GetBinWidth(1)/fData[0].data->GetBinWidth(1));
cout << endl << ">> theory scale = " << scale << ", data.res/theory.res = " << fData[0].theory->GetBinWidth(1)/fData[0].data->GetBinWidth(1);
// get real part of the data
fData[i].theoryFourierRe = fourierTheory.GetRealFourier(scale);
//cout << endl << ">> i: " << i << ", fData[i].dataFourierRe = " << fData[i].dataFourierRe;
// get imaginary part of the data
fData[i].theoryFourierIm = fourierTheory.GetImaginaryFourier(scale);
// get power part of the data
fData[i].theoryFourierPwr = fourierTheory.GetPowerFourier(scale);
// get phase part of the data
fData[i].theoryFourierPhase = fourierTheory.GetPhaseFourier();
}
} else { // calculate diff fourier
// delete fourier components
for (unsigned int i=0; i<fData.size(); i++) {
if (fData[i].diffFourierRe != 0) {
delete fData[i].diffFourierRe;
fData[i].diffFourierRe = 0;
}
if (fData[i].diffFourierIm != 0) {
delete fData[i].diffFourierIm;
fData[i].diffFourierIm = 0;
}
if (fData[i].diffFourierPwr != 0) {
delete fData[i].diffFourierPwr;
fData[i].diffFourierPwr = 0;
}
if (fData[i].diffFourierPhase != 0) {
delete fData[i].diffFourierPhase;
fData[i].diffFourierPhase = 0;
}
}
}
}
int plotView = -1;
switch (tag) { // called via popup menu
case FOURIER_PLOT_REAL:
plotView = PV_FOURIER_REAL;
cout << endl << ">> will handle Real Part Fourier ..." << endl;
break;
case FOURIER_PLOT_IMAG:
plotView = PV_FOURIER_IMAG;
cout << endl << ">> will handle Imaginary Part Fourier ..." << endl;
break;
case FOURIER_PLOT_REAL_AND_IMAG:
plotView = PV_FOURIER_REAL_AND_IMAG;
cout << endl << ">> will handle Real+Imaginary Part Fourier ..." << endl;
break;
case FOURIER_PLOT_POWER:
plotView = PV_FOURIER_PWR;
cout << endl << ">> will handle Power Fourier ..." << endl;
break;
case FOURIER_PLOT_PHASE:
plotView = PV_FOURIER_PHASE;
cout << endl << ">> will handle Phase Fourier ..." << endl;
break;
default:
break;
}
if (plotView == fCurrentPlotView) { // twice checked the same -> switch back to data view
fCurrentPlotView = PV_DATA;
// uncheck fourier menu entries
fPopupFourier->UnCheckEntries();
// plot data
PlotData();
} else { // plot fourier
fCurrentPlotView = plotView;
PlotFourier();
}
}

View File

@ -81,11 +81,11 @@ void PStartupHandler::OnStartDocument()
fFourierDefaults.fApodization = FOURIER_APOD_NONE;
fFourierDefaults.fPlotTag = FOURIER_PLOT_REAL_AND_IMAG;
fFourierDefaults.fPhase = 0.0;
fFourierDefaults.fRangeForPhaseCorrection[0] = 0.0;
fFourierDefaults.fRangeForPhaseCorrection[1] = 0.0;
fFourierDefaults.fPlotRange[0] = 0.0;
fFourierDefaults.fPlotRange[1] = 0.0;
fFourierDefaults.fPhaseIncerement = 1.0;
fFourierDefaults.fRangeForPhaseCorrection[0] = -1.0;
fFourierDefaults.fRangeForPhaseCorrection[1] = -1.0;
fFourierDefaults.fPlotRange[0] = -1.0;
fFourierDefaults.fPlotRange[1] = -1.0;
fFourierDefaults.fPhaseIncrement = 1.0;
}
//--------------------------------------------------------------------------
@ -305,7 +305,7 @@ void PStartupHandler::OnCharacters(const char *str)
case ePhaseIncrement:
tstr = TString(str);
if (tstr.IsFloat()) {
fFourierDefaults.fPhaseIncerement = tstr.Atof();
fFourierDefaults.fPhaseIncrement = tstr.Atof();
} else {
cout << endl << "PStartupHandler **WARNING** '" << str << "' is not a valid phase increment, will ignore it.";
cout << endl;

View File

@ -34,53 +34,45 @@
#include "fftw3.h"
#define F_ESTIMATE_N0_AND_BKG true
#define F_SINGLE_HISTO_RAW 0
#define F_SINGLE_HISTO 1
#define F_ASYMMETRY 2
#define F_APODIZATION_NONE 0
#define F_APODIZATION_WEAK 1
#define F_APODIZATION_MEDIUM 2
#define F_APODIZATION_STRONG 3
// gamma_muon / (2 pi) = 1.355342e-5 (GHz/G)
#define F_GAMMA_BAR_MUON 1.355342e-5
// gamma_muon / (2 pi) = 1.355342e-2 (MHz/G)
#define F_GAMMA_BAR_MUON 1.355342e-2
class PFourier
{
public:
PFourier(int dataType, TH1F *data,
PFourier(TH1F *data, int unitTag,
double startTime = 0.0, double endTime = 0.0,
unsigned int zeroPaddingPower = 0,
bool estimateN0AndBkg = false);
unsigned int zeroPaddingPower = 0);
virtual ~PFourier();
virtual void Transform(unsigned int apodizationTag = 0);
virtual double GetFieldResolution() { return fFieldResolution; }
virtual void GetRealFourier(TH1F *realFourier);
virtual void GetImaginaryFourier(TH1F *imaginaryFourier);
virtual double GetResolution() { return fResolution; }
virtual TH1F* GetRealFourier(const double scale = 1.0);
virtual TH1F* GetImaginaryFourier(const double scale = 1.0);
virtual TH1F* GetPowerFourier(const double scale = 1.0);
virtual TH1F* GetPhaseFourier(const double scale = 1.0);
virtual bool IsValid() { return fValid; }
private:
TH1F *fData;
bool fValid;
int fUnitTag; ///< 1=Field Units (G), 2=Frequency Units (MHz), 3=Angular Frequency Units (Mc/s)
int fDataType; ///< 0=Single Histo Raw, 1=Single Histo Life Time Corrected, 2=Asymmetry
int fApodization; ///< 0=none, 1=weak, 2=medium, 3=strong
double fN0;
double fBkg;
double fTimeResolution;
double fStartTime;
double fEndTime;
unsigned int fZeroPaddingPower;
double fFieldResolution;
TH1F *fData;
double fResolution;
unsigned int fNoOfData;
unsigned int fNoOfBins;
@ -88,10 +80,8 @@ class PFourier
fftw_complex *fIn;
fftw_complex *fOut;
virtual void PrepareSingleHistoFFTwInputData(unsigned int apodizationTag);
virtual void PrepareFFTwInputData(unsigned int apodizationTag);
virtual void ApodizeData(int apodizationTag);
virtual void EstimateN0AndBkg();
};
#endif // _PFOURIER_H_

View File

@ -59,7 +59,7 @@ class PMsrHandler
virtual PMsrLines* GetMsrFunctions() { return &fFunctions; }
virtual PMsrRunList* GetMsrRunList() { return &fRuns; }
virtual PMsrLines* GetMsrCommands() { return &fCommands; }
virtual PMsrFourierStructure* GetMsrFourierList() { return &fFourier; }
virtual PMsrFourierStructure GetMsrFourierList() { return fFourier; }
virtual PMsrPlotList* GetMsrPlotList() { return &fPlots; }
virtual PMsrStatisticStructure* GetMsrStatistic() { return &fStatistic; }

View File

@ -286,14 +286,14 @@ typedef vector<PMsrRunStructure> PMsrRunList;
*/
typedef struct {
bool fFourierBlockPresent; ///< flag indicating if a Fourier block is present in the msr-file
bool fUnits; ///< flag used to indicate the units. 0=field units (G); 1=frequency units (MHz)
int fUnits; ///< flag used to indicate the units. 0=field units (G); 1=frequency units (MHz); 2=Mc/s
int fFourierPower; ///< i.e. zero padding up to 2^fFourierPower, default = 0 which means NO zero padding
int fApodization; ///< tag indicating the kind of apodization wished, 0=no appodization (default), 1=weak, 2=medium, 3=strong (for details see the docu)
int fPlotTag; ///< tag used for initial plot. 0=real, 1=imaginary, 2=real & imaginary (default), 3=power, 4=phase
double fPhase; ///< phase
double fRangeForPhaseCorrection[2]; ///< field/frequency range for automatic phase correction
double fPlotRange[2]; ///< field/frequency plot range
double fPhaseIncerement; ///< phase increment for manual phase optimization
double fPhaseIncrement; ///< phase increment for manual phase optimization
} PMsrFourierStructure;
//-------------------------------------------------------------

View File

@ -149,14 +149,14 @@ class PMusrCanvas : public TObject, public TQObject
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh);
PMusrCanvas(const int number, const char* title,
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh,
PMsrFourierStructure *fourierDefault,
PMsrFourierStructure fourierDefault,
const PIntVector markerList, const PIntVector colorList);
virtual ~PMusrCanvas();
virtual Bool_t IsValid() { return fValid; }
#ifndef __MAKECINT__
virtual void SetMsrHandler(PMsrHandler *msrHandler) { fMsrHandler = msrHandler; }
virtual void SetMsrHandler(PMsrHandler *msrHandler);
virtual void SetRunListCollection(PRunListCollection *runList) { fRunList = runList; }
#endif // __MAKECINT__
@ -200,11 +200,12 @@ class PMusrCanvas : public TObject, public TQObject
PMusrCanvasDataList fData;
PMusrCanvasNonMusrDataList fNonMusrData;
PMsrFourierStructure *fFourier;
PMsrFourierStructure fFourier;
PIntVector fMarkerList;
PIntVector fColorList;
virtual void CreateStyle();
virtual void InitFourier();
virtual void InitMusrCanvas(const char* title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh);
virtual void InitDataSet(PMusrCanvasDataSet &dataSet);
virtual void InitDataSet(PMusrCanvasNonMusrDataSet &dataSet);
@ -219,9 +220,12 @@ class PMusrCanvas : public TObject, public TQObject
virtual double CalculateDiff(const double x, const double y, TGraphErrors *theo);
virtual Int_t FindBin(const double x, TGraphErrors *graph);
virtual double GetGlobalMaximum(TH1F* histo);
virtual double GetGlobalMinimum(TH1F* histo);
virtual void PlotData();
virtual void PlotDifference();
virtual void PlotFourier(int fourierType);
virtual void PlotFourier();
virtual void SaveDataAscii();
virtual void SaveDataDb();

View File

@ -58,10 +58,10 @@ class PStartupHandler : public TObject, public TQObject
virtual void CheckLists();
virtual PMsrFourierStructure* GetFourierDefaults() { return &fFourierDefaults; }
virtual const PStringVector GetDataPathList() const { return fDataPathList; }
virtual const PIntVector GetMarkerList() const { return fMarkerList; }
virtual const PIntVector GetColorList() const { return fColorList; }
virtual PMsrFourierStructure GetFourierDefaults() { return fFourierDefaults; }
virtual const PStringVector GetDataPathList() const { return fDataPathList; }
virtual const PIntVector GetMarkerList() const { return fMarkerList; }
virtual const PIntVector GetColorList() const { return fColorList; }
private:
enum EKeyWords {eEmpty, eComment, eDataPath,