added asymmetry plot

This commit is contained in:
nemu 2008-04-17 09:12:54 +00:00
parent ef4819ba07
commit beba182172
5 changed files with 179 additions and 87 deletions

View File

@ -55,7 +55,6 @@ PMusrCanvas::PMusrCanvas()
fDataTheoryPad = 0;
fParameterTheoryPad = 0;
fInfoPad = 0;
fKeyboardHandlerText = 0;
}
//--------------------------------------------------------------------------
@ -95,11 +94,8 @@ PMusrCanvas::~PMusrCanvas()
{
cout << "~PMusrCanvas() called" << endl;
// cleanup
if (fKeyboardHandlerText) {
delete fKeyboardHandlerText;
fKeyboardHandlerText = 0;
}
if (fTitlePad) {
fTitlePad->Clear();
delete fTitlePad;
fTitlePad = 0;
}
@ -108,10 +104,12 @@ cout << "~PMusrCanvas() called" << endl;
fDataTheoryPad = 0;
}
if (fParameterTheoryPad) {
fParameterTheoryPad->Clear();
delete fParameterTheoryPad;
fParameterTheoryPad = 0;
}
if (fInfoPad) {
fInfoPad->Clear();
delete fInfoPad;
fInfoPad = 0;
}
@ -147,7 +145,6 @@ void PMusrCanvas::InitMusrCanvas(const char* title, Int_t wtopx, Int_t wtopy, In
fDataTheoryPad = 0;
fParameterTheoryPad = 0;
fInfoPad = 0;
fKeyboardHandlerText = 0;
// invoke canvas
TString canvasName = TString("fMainCanvas");
@ -203,18 +200,6 @@ void PMusrCanvas::InitMusrCanvas(const char* title, Int_t wtopx, Int_t wtopy, In
fInfoPad->SetFillColor(TColor::GetColor(255,255,255));
fInfoPad->SetTextAlign(12); // middle, left
// fKeyboardHandlerText Pad init
fDataTheoryPad->cd();
fKeyboardHandlerText = new TPaveText(0.1, 0.1, 0.3, 0.2, "rb");
if (fKeyboardHandlerText == 0) {
cout << endl << "PMusrCanvas::PMusrCanvas: **PANIC ERROR**: Couldn't invoke fKeyboardHandlerText";
cout << endl;
return;
}
fKeyboardHandlerText->AddText("none");
fKeyboardHandlerText->Draw();
fDataTheoryPad->Modified();
fValid = true;
fMainCanvas->cd();
@ -228,7 +213,6 @@ void PMusrCanvas::InitMusrCanvas(const char* title, Int_t wtopx, Int_t wtopy, In
// cout << "fDataTheoryPad " << fDataTheoryPad << endl;
// cout << "fParameterTheoryPad " << fParameterTheoryPad << endl;
// cout << "fInfoPad " << fInfoPad << endl;
// cout << "fKeyboardHandlerText " << fKeyboardHandlerText << endl;
}
//--------------------------------------------------------------------------
@ -265,15 +249,7 @@ void PMusrCanvas::HandleCmdKey(Int_t event, Int_t x, Int_t y, TObject *selected)
if (x == 'q') {
Done(0);
} else {
if (fKeyboardHandlerText) {
fDataTheoryPad->cd();
delete fKeyboardHandlerText;
fKeyboardHandlerText = 0;
fKeyboardHandlerText = new TPaveText(0.1, 0.1, 0.3, 0.2, "rb");
fKeyboardHandlerText->AddText(str.Data());
fKeyboardHandlerText->Draw();
fMainCanvas->cd();
}
// do all the necessary stuff **TO BE DONE**
fMainCanvas->Update();
}
}
@ -427,7 +403,7 @@ cout << endl;
return;
}
// handle data
HandleSingleHistoDataSet(runNo, data);
HandleDataSet(runNo, data);
break;
case MSR_FITTYPE_ASYM:
data = fRunList->GetAsymmetry(runNo, PRunListCollection::kRunNo);
@ -439,7 +415,7 @@ cout << endl;
return;
}
// handle data
HandleAsymmetryDataSet(runNo, data);
HandleDataSet(runNo, data);
break;
case MSR_FITTYPE_ASYM_RRF:
data = fRunList->GetRRF(runNo, PRunListCollection::kRunNo);
@ -451,7 +427,7 @@ cout << endl;
return;
}
// handle data
HandleRRFDataSet(runNo, data);
HandleDataSet(runNo, data);
break;
case MSR_FITTYPE_NO_MUSR:
data = fRunList->GetNonMusr(runNo, PRunListCollection::kRunNo);
@ -463,7 +439,7 @@ cout << endl;
return;
}
// handle data
HandleNoneMusrDataSet(runNo, data);
HandleDataSet(runNo, data);
break;
default:
fValid = false;
@ -703,7 +679,7 @@ void PMusrCanvas::CleanupDataSet(PMusrCanvasDataSet &dataSet)
}
//--------------------------------------------------------------------------
// HandleSingleHistoDataSet
// HandleDataSet
//--------------------------------------------------------------------------
/**
* <p>
@ -711,7 +687,7 @@ void PMusrCanvas::CleanupDataSet(PMusrCanvasDataSet &dataSet)
* \param runNo
* \param data
*/
void PMusrCanvas::HandleSingleHistoDataSet(unsigned int runNo, PRunData *data)
void PMusrCanvas::HandleDataSet(unsigned int runNo, PRunData *data)
{
PMusrCanvasDataSet dataSet;
TH1F *dataHisto;
@ -721,7 +697,7 @@ void PMusrCanvas::HandleSingleHistoDataSet(unsigned int runNo, PRunData *data)
double start;
double end;
InitDataSet(dataSet);
InitDataSet(dataSet);
// dataHisto -------------------------------------------------------------
// create histo specific infos
@ -791,43 +767,3 @@ void PMusrCanvas::HandleSingleHistoDataSet(unsigned int runNo, PRunData *data)
fData.push_back(dataSet);
}
//--------------------------------------------------------------------------
// HandleAsymmetryDataSet
//--------------------------------------------------------------------------
/**
* <p>
*
* \param runNo
* \param data
*/
void PMusrCanvas::HandleAsymmetryDataSet(unsigned int runNo, PRunData *data)
{
}
//--------------------------------------------------------------------------
// HandleRRFDataSet
//--------------------------------------------------------------------------
/**
* <p>
*
* \param runNo
* \param data
*/
void PMusrCanvas::HandleRRFDataSet(unsigned int runNo, PRunData *data)
{
}
//--------------------------------------------------------------------------
// HandleNoneMusrDataSet
//--------------------------------------------------------------------------
/**
* <p>
*
* \param runNo
* \param data
*/
void PMusrCanvas::HandleNoneMusrDataSet(unsigned int runNo, PRunData *data)
{
}

View File

@ -542,17 +542,17 @@ bool PRunAsymmetry::PrepareFitData(PRawRunData* runData, unsigned int histoNo[2]
}
// 2nd check if start is within proper bounds
if ((start[i] < 0) || (start[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareData(): start data bin doesn't make any sense!";
cout << endl << "PRunAsymmetry::PrepareFitData(): **ERROR** start data bin doesn't make any sense!";
return false;
}
// 3rd check if end is within proper bounds
if ((end[i] < 0) || (end[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareData(): end data bin doesn't make any sense!";
cout << endl << "PRunAsymmetry::PrepareFitData(): **ERROR** end data bin doesn't make any sense!";
return false;
}
// 4th check if t0 is within proper bounds
if ((t0[i] < 0) || (t0[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareData(): t0 data bin doesn't make any sense!";
cout << endl << "PRunAsymmetry::PrepareFitData(): **ERROR** t0 data bin doesn't make any sense!";
return false;
}
}
@ -599,7 +599,7 @@ bool PRunAsymmetry::PrepareFitData(PRawRunData* runData, unsigned int histoNo[2]
// check if packed forward and backward hist have the same size, otherwise something is wrong
if (forwardPacked.fValue.size() != backwardPacked.fValue.size()) {
cout << endl << "PRunAsymmetry::PrepareData(): **PANIC ERROR**:";
cout << endl << "PRunAsymmetry::PrepareFitData(): **PANIC ERROR**:";
cout << endl << " packed forward and backward histo should have the same number of bins!";
cout << endl << " however found (f/b) : " << forwardPacked.fValue.size() << "/" << backwardPacked.fValue.size();
return false;
@ -672,5 +672,165 @@ return false;
*/
bool PRunAsymmetry::PrepareViewData(PRawRunData* runData, unsigned int histoNo[2])
{
// transform raw histo data. This is done the following way (for details see the manual):
// first rebin the data, than calculate the asymmetry
// first get start data, end data, and t0
unsigned int start[2] = {(int)fT0s[0]-fRunInfo->fPacking*((int)fT0s[0]/fRunInfo->fPacking),
(int)fT0s[1]-fRunInfo->fPacking*((int)fT0s[1]/fRunInfo->fPacking)};
unsigned int end[2];
double t0[2] = {fT0s[0], fT0s[1]};
// make sure that there are equal number of rebinned bins in forward and backward
unsigned int noOfBins0 = (runData->fDataBin[histoNo[0]].size()-start[0])/fRunInfo->fPacking;
unsigned int noOfBins1 = (runData->fDataBin[histoNo[1]].size()-start[1])/fRunInfo->fPacking;
if (noOfBins0 > noOfBins1)
noOfBins0 = noOfBins1;
end[0] = start[0] + noOfBins0 * fRunInfo->fPacking;
end[1] = start[1] + noOfBins0 * fRunInfo->fPacking;
// check if start, end, and t0 make any sense
// 1st check if start and end are in proper order
for (unsigned int i=0; i<2; i++) {
if (end[i] < start[i]) { // need to swap them
int keep = end[i];
end[i] = start[i];
start[i] = keep;
}
// 2nd check if start is within proper bounds
if ((start[i] < 0) || (start[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareViewData(): **ERROR** start data bin doesn't make any sense!";
return false;
}
// 3rd check if end is within proper bounds
if ((end[i] < 0) || (end[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareViewData(): **ERROR** end data bin doesn't make any sense!";
return false;
}
// 4th check if t0 is within proper bounds
if ((t0[i] < 0) || (t0[i] > runData->fDataBin[histoNo[i]].size())) {
cout << endl << "PRunAsymmetry::PrepareViewData(): **ERROR** t0 data bin doesn't make any sense!";
return false;
}
}
// everything looks fine, hence fill packed forward and backward histo
PRunData forwardPacked;
PRunData backwardPacked;
double value = 0.0;
double error = 0.0;
// forward
for (unsigned i=start[0]; i<end[0]; i++) {
if (((i-start[0]) % fRunInfo->fPacking == 0) && (i != start[0])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fRunInfo->fPacking;
forwardPacked.fValue.push_back(value);
if (value == 0.0)
forwardPacked.fError.push_back(1.0);
else
forwardPacked.fError.push_back(TMath::Sqrt(error)/fRunInfo->fPacking);
value = 0.0;
error = 0.0;
}
value += fForward[i];
error += fForwardErr[i]*fForwardErr[i];
}
// backward
for (unsigned i=start[1]; i<end[1]; i++) {
if (((i-start[1]) % fRunInfo->fPacking == 0) && (i != start[1])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fRunInfo->fPacking;
backwardPacked.fValue.push_back(value);
if (value == 0.0)
backwardPacked.fError.push_back(1.0);
else
backwardPacked.fError.push_back(TMath::Sqrt(error)/fRunInfo->fPacking);
value = 0.0;
error = 0.0;
}
value += fBackward[i];
error += fBackwardErr[i]*fBackwardErr[i];
}
// check if packed forward and backward hist have the same size, otherwise something is wrong
if (forwardPacked.fValue.size() != backwardPacked.fValue.size()) {
cout << endl << "PRunAsymmetry::PrepareViewData(): **PANIC ERROR**:";
cout << endl << " packed forward and backward histo should have the same number of bins!";
cout << endl << " however found (f/b) : " << forwardPacked.fValue.size() << "/" << backwardPacked.fValue.size();
return false;
}
// form asymmetry including error propagation
double asym;
double f, b, ef, eb;
// fill data time start, and step
// data start at data_start-t0
fData.fDataTimeStart = fTimeResolution*(((double)start[0]-t0[0])+(double)fRunInfo->fPacking/2.0);
fData.fDataTimeStep = fTimeResolution*(double)fRunInfo->fPacking;
for (unsigned int i=0; i<forwardPacked.fValue.size(); i++) {
// to make the formulae more readable
f = forwardPacked.fValue[i];
b = backwardPacked.fValue[i];
ef = forwardPacked.fError[i];
eb = backwardPacked.fError[i];
// check that there are indeed bins
if (f+b != 0.0)
asym = (f-b) / (f+b);
else
asym = 0.0;
fData.fValue.push_back(asym);
// calculate the error
if (f+b != 0.0)
error = 2.0/((f+b)*(f+b))*TMath::Sqrt(b*b*ef*ef+eb*eb*f*f);
else
error = 1.0;
fData.fError.push_back(error);
}
// count the number of bins to be fitted
double time;
fNoOfFitBins=0;
for (unsigned int i=0; i<fData.fValue.size(); i++) {
time = fData.fDataTimeStart + (double)i * fData.fDataTimeStep;
if ((time >= fFitStartTime) && (time <= fFitStopTime))
fNoOfFitBins++;
}
// clean up
forwardPacked.fValue.clear();
forwardPacked.fError.clear();
backwardPacked.fValue.clear();
backwardPacked.fError.clear();
fForward.clear();
fForwardErr.clear();
fBackward.clear();
fBackwardErr.clear();
// fill theory vector for kView
// feed the parameter vector
std::vector<double> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (unsigned int i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// calculate functions
for (int i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), fRunInfo->fMap, par);
}
// calculate theory
unsigned int size = runData->fDataBin[histoNo[0]].size();
double startTime = -fT0s[0]*fTimeResolution;
fData.fTheoryTimeStart = startTime;
fData.fTheoryTimeStep = fTimeResolution;
for (unsigned int i=0; i<size; i++) {
time = startTime + (double)i*fTimeResolution;
fData.fTheory.push_back(fTheory->Func(time, par, fFuncValues));
}
// clean up
par.clear();
return true;
}

View File

@ -51,8 +51,8 @@ using namespace std;
#define PRUN_RRF 4
#define PRUN_NON_MUSR 8
// muon life time in (us)
#define PMUON_LIFETIME 2.19705
// muon life time in (us), see PRL99, 032001 (2007)
#define PMUON_LIFETIME 2.197019
// accelerator cycles in (us), needed to determine proper background
#define ACCEL_PERIOD_PSI 0.01975

View File

@ -118,8 +118,6 @@ class PMusrCanvas : public TObject, public TQObject
TPaveText *fParameterTheoryPad;
TLegend *fInfoPad;
TPaveText *fKeyboardHandlerText;
#ifndef __MAKECINT__
PMsrHandler *fMsrHandler;
PRunListCollection *fRunList;
@ -133,10 +131,7 @@ class PMusrCanvas : public TObject, public TQObject
virtual void InitMusrCanvas(const char* title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh);
virtual void InitDataSet(PMusrCanvasDataSet &dataSet);
virtual void CleanupDataSet(PMusrCanvasDataSet &dataSet);
virtual void HandleSingleHistoDataSet(unsigned int runNo, PRunData *data);
virtual void HandleAsymmetryDataSet(unsigned int runNo, PRunData *data);
virtual void HandleRRFDataSet(unsigned int runNo, PRunData *data);
virtual void HandleNoneMusrDataSet(unsigned int runNo, PRunData *data);
virtual void HandleDataSet(unsigned int runNo, PRunData *data);
ClassDef(PMusrCanvas, 1)
};

View File

@ -225,6 +225,7 @@ int main(int argc, char *argv[])
// clean up
cout << endl << "clean up canvas vector ...";
for (unsigned int i=0; i<canvasVector.size(); i++) {
// check if canvas is still there before calling the destructor **TO BE DONE**
canvasVector[i]->~PMusrCanvas();
}
canvasVector.empty();