improve the doxygen docu of PRunAsymmetry.*.
This commit is contained in:
@@ -50,7 +50,11 @@
|
||||
// Constructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Constructor
|
||||
* \brief Default constructor that initializes all member variables.
|
||||
*
|
||||
* Sets all counters and indices to default/invalid values. This constructor
|
||||
* creates an invalid instance that requires proper initialization via the
|
||||
* main constructor.
|
||||
*/
|
||||
PRunAsymmetry::PRunAsymmetry() : PRunBase()
|
||||
{
|
||||
@@ -71,12 +75,26 @@ PRunAsymmetry::PRunAsymmetry() : PRunBase()
|
||||
// Constructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Constructor
|
||||
* \brief Main constructor that initializes μSR asymmetry fitting.
|
||||
*
|
||||
* \param msrInfo pointer to the msr-file handler
|
||||
* \param rawData raw run data
|
||||
* \param runNo number of the run within the msr-file
|
||||
* \param tag tag showing what shall be done: kFit == fitting, kView == viewing
|
||||
* Performs comprehensive initialization:
|
||||
* 1. Validates packing parameter from RUN or GLOBAL block
|
||||
* 2. Validates α parameter (required for asymmetry)
|
||||
* 3. Validates β parameter (optional, defaults to 1)
|
||||
* 4. Determines α/β configuration tag (1-4)
|
||||
* 5. Calls PrepareData() to load and process histogram data
|
||||
*
|
||||
* The α/β tag determines the asymmetry calculation method:
|
||||
* - Tag 1: α=1, β=1 (no corrections)
|
||||
* - Tag 2: α≠1, β=1 (forward/backward correction)
|
||||
* - Tag 3: α=1, β≠1 (alternative correction)
|
||||
* - Tag 4: α≠1, β≠1 (both corrections)
|
||||
*
|
||||
* \param msrInfo Pointer to MSR file handler
|
||||
* \param rawData Pointer to raw run data handler
|
||||
* \param runNo Run number within the MSR file
|
||||
* \param tag Operation mode (kFit or kView)
|
||||
* \param theoAsData If true, calculate theory only at data points
|
||||
*/
|
||||
PRunAsymmetry::PRunAsymmetry(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag, Bool_t theoAsData) :
|
||||
PRunBase(msrInfo, rawData, runNo, tag), fTheoAsData(theoAsData)
|
||||
@@ -173,7 +191,10 @@ PRunAsymmetry::PRunAsymmetry(PMsrHandler *msrInfo, PRunDataHandler *rawData, UIn
|
||||
// Destructor
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Destructor.
|
||||
* \brief Destructor that cleans up histogram data.
|
||||
*
|
||||
* Clears all four histogram vectors (forward/backward × data/errors)
|
||||
* to free memory.
|
||||
*/
|
||||
PRunAsymmetry::~PRunAsymmetry()
|
||||
{
|
||||
@@ -187,12 +208,21 @@ PRunAsymmetry::~PRunAsymmetry()
|
||||
// CalcChiSquare (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculate chi-square.
|
||||
* \brief Calculates chi-square for μSR asymmetry fit.
|
||||
*
|
||||
* <b>return:</b>
|
||||
* - chisq value
|
||||
* Computes χ² by comparing the measured asymmetry with theory:
|
||||
* χ² = Σ[(A_data - A_theory)²/σ²]
|
||||
*
|
||||
* \param par parameter vector iterated by minuit2
|
||||
* The asymmetry calculation depends on fAlphaBetaTag:
|
||||
* - Tag 1 (α=β=1): A = (F - B)/(F + B)
|
||||
* - Tag 2 (α≠1, β=1): A = (F - αB)/(F + αB)
|
||||
* - Tag 3 (α=1, β≠1): Uses β correction
|
||||
* - Tag 4 (α≠1, β≠1): Uses both α and β corrections
|
||||
*
|
||||
* Supports OpenMP parallelization for faster calculation.
|
||||
*
|
||||
* \param par Parameter vector from MINUIT minimizer
|
||||
* \return Chi-square value
|
||||
*/
|
||||
Double_t PRunAsymmetry::CalcChiSquare(const std::vector<Double_t>& par)
|
||||
{
|
||||
@@ -289,12 +319,17 @@ Double_t PRunAsymmetry::CalcChiSquare(const std::vector<Double_t>& par)
|
||||
// CalcChiSquareExpected (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculate expected chi-square. Currently not implemented since not clear what to be done.
|
||||
* \brief Calculates expected chi-square value.
|
||||
*
|
||||
* <b>return:</b>
|
||||
* - chisq value == 0.0
|
||||
* This function is currently not implemented for asymmetry fits because the expected
|
||||
* chi-square calculation for asymmetry data requires a more complex statistical treatment
|
||||
* than for single histogram fits. The asymmetry is a ratio of count rates, and the
|
||||
* proper expected value calculation is non-trivial.
|
||||
*
|
||||
* \param par parameter vector iterated by minuit2
|
||||
* \param par Parameter vector from MINUIT minimizer
|
||||
* \return Always returns 0.0 (placeholder value)
|
||||
*
|
||||
* \todo Implement proper expected chi-square calculation for asymmetry fits
|
||||
*/
|
||||
Double_t PRunAsymmetry::CalcChiSquareExpected(const std::vector<Double_t>& par)
|
||||
{
|
||||
@@ -305,9 +340,16 @@ Double_t PRunAsymmetry::CalcChiSquareExpected(const std::vector<Double_t>& par)
|
||||
// CalcMaxLikelihood (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>NOT IMPLEMENTED!!
|
||||
* \brief Calculates maximum likelihood estimator for asymmetry fit.
|
||||
*
|
||||
* \param par parameter vector iterated by minuit2
|
||||
* Maximum likelihood estimation provides an alternative to χ² minimization and can be
|
||||
* more appropriate for low-count data where Gaussian statistics do not apply. However,
|
||||
* the proper likelihood function for μSR asymmetry data is complex and not yet implemented.
|
||||
*
|
||||
* \param par Parameter vector from MINUIT minimizer
|
||||
* \return Placeholder value of 1.0
|
||||
*
|
||||
* \todo Implement proper Poisson-based maximum likelihood for asymmetry fits
|
||||
*/
|
||||
Double_t PRunAsymmetry::CalcMaxLikelihood(const std::vector<Double_t>& par)
|
||||
{
|
||||
@@ -320,9 +362,13 @@ Double_t PRunAsymmetry::CalcMaxLikelihood(const std::vector<Double_t>& par)
|
||||
// GetNoOfFitBins (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculate the number of fitted bins for the current fit range.
|
||||
* \brief Returns the number of bins included in the fit.
|
||||
*
|
||||
* <b>return:</b> number of fitted bins.
|
||||
* Calculates and returns the number of data bins that fall within the current fit range.
|
||||
* This value is used for determining degrees of freedom and is recalculated when the
|
||||
* fit range changes (e.g., via COMMAND block).
|
||||
*
|
||||
* \return Number of data bins included in the fit
|
||||
*/
|
||||
UInt_t PRunAsymmetry::GetNoOfFitBins()
|
||||
{
|
||||
@@ -335,15 +381,26 @@ UInt_t PRunAsymmetry::GetNoOfFitBins()
|
||||
// SetFitRangeBin (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Allows to change the fit range on the fly. Used in the COMMAND block.
|
||||
* The syntax of the string is: FIT_RANGE fgb[+n00] lgb[-n01] [fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]].
|
||||
* If only one pair of fgb/lgb is given, it is used for all runs in the RUN block section.
|
||||
* If multiple fgb/lgb's are given, the number N has to be the number of RUN blocks in
|
||||
* the msr-file.
|
||||
* \brief Dynamically changes the fit range in bin units.
|
||||
*
|
||||
* <p>nXY are offsets which can be used to shift, limit the fit range.
|
||||
* Allows modification of the fit range at runtime, typically called from the COMMAND block.
|
||||
* Supports bin-based fit ranges with optional offsets for fine-tuning.
|
||||
*
|
||||
* \param fitRange string containing the necessary information.
|
||||
* Syntax formats:
|
||||
* - Single range: FIT_RANGE fgb[+n0] lgb[-n1]
|
||||
* - Applied to all RUN blocks
|
||||
* - Multiple ranges: FIT_RANGE fgb[+n00] lgb[-n01] fgb[+n10] lgb[-n11] ... fgb[+nN0] lgb[-nN1]
|
||||
* - One pair per RUN block (N must equal number of RUN blocks)
|
||||
*
|
||||
* Parameters:
|
||||
* - fgb: First good bin (start of fit range)
|
||||
* - lgb: Last good bin (end of fit range)
|
||||
* - +n: Positive offset to shift start forward
|
||||
* - -n: Negative offset to shift end backward
|
||||
*
|
||||
* Example: "FIT_RANGE 10+5 200-10" uses bins [15, 190] for fitting
|
||||
*
|
||||
* \param fitRange String containing fit range specification
|
||||
*/
|
||||
void PRunAsymmetry::SetFitRangeBin(const TString fitRange)
|
||||
{
|
||||
@@ -425,7 +482,16 @@ void PRunAsymmetry::SetFitRangeBin(const TString fitRange)
|
||||
// CalcNoOfFitBins (public)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculate the number of fitted bins for the current fit range.
|
||||
* \brief Calculates the number of bins included in the current fit range.
|
||||
*
|
||||
* Determines fStartTimeBin and fEndTimeBin from the fit time range (fFitStartTime, fFitEndTime)
|
||||
* and data time grid. Ensures that bin indices remain within valid histogram bounds.
|
||||
* The result is stored in fNoOfFitBins.
|
||||
*
|
||||
* This calculation accounts for:
|
||||
* - Data time step and start time
|
||||
* - Rounding effects (ceiling for start, floor for end)
|
||||
* - Boundary conditions (clips to [0, histogram size])
|
||||
*/
|
||||
void PRunAsymmetry::CalcNoOfFitBins()
|
||||
{
|
||||
@@ -447,7 +513,20 @@ void PRunAsymmetry::CalcNoOfFitBins()
|
||||
// CalcTheory (protected)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Calculate theory for a given set of fit-parameters.
|
||||
* \brief Calculates theoretical asymmetry values for the current parameters.
|
||||
*
|
||||
* Computes the expected asymmetry A(t) for all data points based on the current
|
||||
* parameter values and the user-defined theory function. The calculation depends
|
||||
* on the α/β correction mode:
|
||||
*
|
||||
* - Tag 1 (α=1, β=1): A(t) = f(t)
|
||||
* - Tag 2 (α≠1, β=1): A(t) = [f(t)(α+1) - (α-1)] / [(α+1) - f(t)(α-1)]
|
||||
* - Tag 3 (α=1, β≠1): A(t) = f(t)(β+1) / [2 - f(t)(β-1)]
|
||||
* - Tag 4 (α≠1, β≠1): Combined α and β corrections
|
||||
*
|
||||
* where f(t) is the raw theory function from the THEORY block.
|
||||
*
|
||||
* The calculated values are stored in fData for plotting and comparison with measured data.
|
||||
*/
|
||||
void PRunAsymmetry::CalcTheory()
|
||||
{
|
||||
@@ -531,23 +610,31 @@ void PRunAsymmetry::CalcTheory()
|
||||
// PrepareData (protected)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Prepare data for fitting or viewing. What is already processed at this stage:
|
||||
* - get all needed forward/backward histograms
|
||||
* - get time resolution
|
||||
* - get start/stop fit time
|
||||
* - get t0's and perform necessary cross checks (e.g. if t0 of msr-file (if present) are consistent with t0 of the data files, etc.)
|
||||
* - add runs (if addruns are present)
|
||||
* - group histograms (if grouping is present)
|
||||
* - subtract background
|
||||
* \brief Main data preparation routine for asymmetry fitting and viewing.
|
||||
*
|
||||
* Error propagation for \f$ A_i = (f_i^{\rm c}-b_i^{\rm c})/(f_i^{\rm c}+b_i^{\rm c})\f$:
|
||||
* \f[ \Delta A_i = \pm\frac{2}{(f_i^{\rm c}+b_i^{\rm c})^2}\left[
|
||||
* (b_i^{\rm c})^2 (\Delta f_i^{\rm c})^2 +
|
||||
* (\Delta b_i^{\rm c})^2 (f_i^{\rm c})^2\right]^{1/2}\f]
|
||||
* Performs comprehensive data preparation including:
|
||||
* - Loading forward/backward histograms from data files
|
||||
* - Extracting metadata (field, energy, temperature)
|
||||
* - Determining time resolution from data file
|
||||
* - Validating and retrieving t0 values for all histograms
|
||||
* - Adding multiple runs together (if addruns are specified)
|
||||
* - Grouping multiple histograms (if grouping is specified)
|
||||
* - Subtracting background (fixed or estimated)
|
||||
* - Calculating asymmetry and error bars
|
||||
* - Applying bin packing (if specified)
|
||||
*
|
||||
* <b>return:</b>
|
||||
* - true if everthing went smooth
|
||||
* - false, otherwise.
|
||||
* The asymmetry is calculated as:
|
||||
* \f[ A_i = \frac{f_i^{\rm c} - b_i^{\rm c}}{f_i^{\rm c} + b_i^{\rm c}} \f]
|
||||
*
|
||||
* Error propagation (assuming Poisson statistics):
|
||||
* \f[ \Delta A_i = \pm\frac{2}{(f_i^{\rm c}+b_i^{\rm c})^2}\sqrt{
|
||||
* (b_i^{\rm c})^2 (\Delta f_i^{\rm c})^2 +
|
||||
* (f_i^{\rm c})^2 (\Delta b_i^{\rm c})^2} \f]
|
||||
*
|
||||
* where \f$ f_i^{\rm c} \f$ and \f$ b_i^{\rm c} \f$ are background-corrected forward and
|
||||
* backward histograms, respectively.
|
||||
*
|
||||
* \return True if data preparation succeeds, false on any error
|
||||
*/
|
||||
Bool_t PRunAsymmetry::PrepareData()
|
||||
{
|
||||
@@ -942,15 +1029,24 @@ Bool_t PRunAsymmetry::SubtractEstimatedBkg()
|
||||
// PrepareFitData (protected)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the asymmetry for fitting.
|
||||
* Before forming the asymmetry, the following checks will be performed:
|
||||
* -# check if data range is given, if not try to estimate one.
|
||||
* -# check that if a data range is present, that it makes any sense.
|
||||
* -# check that 'first good bin'-'t0' is the same for forward and backward histogram. If not adjust it.
|
||||
* -# pack data (rebin).
|
||||
* -# if packed forward size != backward size, truncate the longer one such that an asymmetry can be formed.
|
||||
* -# calculate the asymmetry: \f$ A_i = (f_i^c-b_i^c)/(f_i^c+b_i^c) \f$
|
||||
* -# calculate the asymmetry errors: \f$ \delta A_i = 2 \sqrt{(b_i^c)^2 (\delta f_i^c)^2 + (\delta b_i^c)^2 (f_i^c)^2}/(f_i^c+b_i^c)^2\f$
|
||||
* \brief Processes pre-grouped data and calculates asymmetry for fitting.
|
||||
*
|
||||
* Takes forward/backward histograms (after grouping and addrun operations) and performs
|
||||
* final processing steps for fitting:
|
||||
*
|
||||
* 1. Validates data range, estimates if not specified
|
||||
* 2. Checks data range consistency and validity
|
||||
* 3. Aligns forward/backward histograms (ensures 'first good bin - t0' is identical)
|
||||
* 4. Applies bin packing (rebinning) if requested
|
||||
* 5. Truncates longer histogram if packed sizes differ
|
||||
* 6. Calculates asymmetry: \f$ A_i = (f_i^{\rm c}-b_i^{\rm c})/(f_i^{\rm c}+b_i^{\rm c}) \f$
|
||||
* 7. Propagates errors: \f$ \delta A_i = \frac{2}{(f_i^{\rm c}+b_i^{\rm c})^2}\sqrt{(b_i^{\rm c})^2 (\delta f_i^{\rm c})^2 + (f_i^{\rm c})^2 (\delta b_i^{\rm c})^2} \f$
|
||||
*
|
||||
* Bin packing averages multiple bins to improve statistics:
|
||||
* - Packed value normalized to per-bin counts (value/packing)
|
||||
* - Error propagation: \f$ \sigma_{\rm packed} = \sqrt{\sum \sigma_i^2}/N_{\rm pack} \f$
|
||||
*
|
||||
* \return True on success, false if data preparation fails
|
||||
*/
|
||||
Bool_t PRunAsymmetry::PrepareFitData()
|
||||
{
|
||||
@@ -1056,20 +1152,25 @@ Bool_t PRunAsymmetry::PrepareFitData()
|
||||
// PrepareViewData (protected)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Take the pre-processed data (i.e. grouping and addrun are preformed) and form the asymmetry for view representation.
|
||||
* Before forming the asymmetry, the following checks will be performed:
|
||||
* -# check if view packing is whished.
|
||||
* -# check if data range is given, if not try to estimate one.
|
||||
* -# check that data range is present, that it makes any sense.
|
||||
* -# check that 'first good bin'-'t0' is the same for forward and backward histogram. If not adjust it.
|
||||
* -# pack data (rebin).
|
||||
* -# if packed forward size != backward size, truncate the longer one such that an asymmetry can be formed.
|
||||
* -# calculate the asymmetry: \f$ A_i = (\alpha f_i^c-b_i^c)/(\alpha \beta f_i^c+b_i^c) \f$
|
||||
* -# calculate the asymmetry errors: \f$ \delta A_i = 2 \sqrt{(b_i^c)^2 (\delta f_i^c)^2 + (\delta b_i^c)^2 (f_i^c)^2}/(f_i^c+b_i^c)^2\f$
|
||||
* -# calculate the theory vector.
|
||||
* \brief Prepares asymmetry data for plotting and visualization.
|
||||
*
|
||||
* \param runData raw run data needed to perform some crosschecks
|
||||
* \param histoNo histogram number (within a run). histoNo[0]: forward histogram number, histNo[1]: backward histogram number
|
||||
* Processes pre-grouped data for display in plots, with special handling for view packing
|
||||
* and α/β corrections. Similar to PrepareFitData but includes theory calculation and
|
||||
* supports separate view packing settings.
|
||||
*
|
||||
* Processing steps:
|
||||
* 1. Checks for view-specific packing (overrides fit packing for display)
|
||||
* 2. Validates and estimates data range if needed
|
||||
* 3. Aligns forward/backward histogram start bins relative to t0
|
||||
* 4. Applies bin packing for improved visualization
|
||||
* 5. Ensures equal bin counts between forward/backward after packing
|
||||
* 6. Calculates asymmetry with α/β corrections: \f$ A_i = (\alpha f_i^{\rm c} - b_i^{\rm c})/(\alpha \beta f_i^{\rm c} + b_i^{\rm c}) \f$
|
||||
* 7. Propagates errors: \f$ \delta A_i = \frac{2}{(f_i^{\rm c}+b_i^{\rm c})^2}\sqrt{(b_i^{\rm c})^2 (\delta f_i^{\rm c})^2 + (f_i^{\rm c})^2 (\delta b_i^{\rm c})^2} \f$
|
||||
* 8. Calculates theory curve for overlay
|
||||
*
|
||||
* \param runData Pointer to raw run data for validation and cross-checks
|
||||
* \param histoNo Array of histogram indices: [0]=forward, [1]=backward
|
||||
* \return True on success, false on error
|
||||
*/
|
||||
Bool_t PRunAsymmetry::PrepareViewData(PRawRunData* runData, UInt_t histoNo[2])
|
||||
{
|
||||
@@ -1341,19 +1442,27 @@ Bool_t PRunAsymmetry::PrepareViewData(PRawRunData* runData, UInt_t histoNo[2])
|
||||
// PrepareRRFViewData (protected)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p> Prepares the RRF data set for visual representation. This is done the following way:
|
||||
* -# make all necessary checks
|
||||
* -# build the asymmetry, \f$ A(t) \f$, WITHOUT packing.
|
||||
* -# \f$ A_R(t) = A(t) \cdot 2 \cos(\omega_R t + \phi_R) \f$
|
||||
* -# do the packing of \f$ A_R(t) \f$
|
||||
* -# calculate theory, \f$ T(t) \f$, as close as possible to the time resolution [compatible with the RRF frequency]
|
||||
* -# \f$ T_R(t) = T(t) \cdot 2 \cos(\omega_R t + \phi_R) \f$
|
||||
* -# do the packing of \f$ T_R(t) \f$
|
||||
* -# calculate the Kaiser FIR filter coefficients
|
||||
* -# filter \f$ T_R(t) \f$.
|
||||
* \brief Prepares rotating reference frame (RRF) data for visualization.
|
||||
*
|
||||
* \param runData raw run data needed to perform some crosschecks
|
||||
* \param histoNo array of the histo numbers form which to build the asymmetry
|
||||
* Transforms asymmetry data into a rotating reference frame for analyzing high-frequency
|
||||
* oscillations. The RRF technique mixes the data with a reference frequency to shift
|
||||
* oscillations down to lower frequencies, making them easier to visualize and analyze.
|
||||
*
|
||||
* Processing sequence:
|
||||
* 1. Validates data ranges and histogram alignment
|
||||
* 2. Builds asymmetry \f$ A(t) \f$ without packing
|
||||
* 3. Applies RRF transformation: \f$ A_R(t) = A(t) \cdot 2\cos(\omega_R t + \phi_R) \f$
|
||||
* 4. Packs the RRF asymmetry data
|
||||
* 5. Calculates theory \f$ T(t) \f$ at high time resolution
|
||||
* 6. Transforms theory to RRF: \f$ T_R(t) = T(t) \cdot 2\cos(\omega_R t + \phi_R) \f$
|
||||
* 7. Packs the RRF theory curve
|
||||
* 8. Applies Kaiser FIR filter to smooth the theory curve
|
||||
*
|
||||
* The RRF frequency (\f$ \omega_R \f$) and phase (\f$ \phi_R \f$) are specified in the PLOT block.
|
||||
*
|
||||
* \param runData Pointer to raw run data for validation
|
||||
* \param histoNo Array of histogram indices: [0]=forward, [1]=backward
|
||||
* \return True on success, false on error
|
||||
*/
|
||||
Bool_t PRunAsymmetry::PrepareRRFViewData(PRawRunData* runData, UInt_t histoNo[2])
|
||||
{
|
||||
@@ -1675,22 +1784,32 @@ Bool_t PRunAsymmetry::PrepareRRFViewData(PRawRunData* runData, UInt_t histoNo[2]
|
||||
// GetProperT0 (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Get the proper t0 for the single histogram run.
|
||||
* -# the t0 vector size = number of detectors (grouping) for forward + backward.
|
||||
* -# initialize t0's with -1
|
||||
* -# fill t0's from RUN block
|
||||
* -# if t0's are missing (i.e. t0 == -1), try to fill from the GLOBAL block.
|
||||
* -# if t0's are missing, try t0's from the data file
|
||||
* -# if t0's are missing, try to estimate them
|
||||
* \brief Determines and validates t0 values for all forward and backward histograms.
|
||||
*
|
||||
* \param runData pointer to the current RUN block entry from the msr-file
|
||||
* \param globalBlock pointer to the GLOBLA block entry from the msr-file
|
||||
* \param forwardHistoNo histogram number vector of forward; forwardHistoNo = msr-file forward + redGreen_offset - 1
|
||||
* \param backwardHistoNo histogram number vector of backwardward; backwardHistoNo = msr-file backward + redGreen_offset - 1
|
||||
* Time zero (t0) marks the arrival time of muons in the sample and is critical for
|
||||
* proper time alignment. This method attempts to find t0 values from multiple sources
|
||||
* with a well-defined fallback hierarchy:
|
||||
*
|
||||
* <b>return:</b>
|
||||
* - true if everthing went smooth
|
||||
* - false, otherwise.
|
||||
* Priority order:
|
||||
* 1. Individual RUN block t0 values (highest priority, user-specified)
|
||||
* 2. GLOBAL block t0 values (shared defaults for all runs)
|
||||
* 3. Data file t0 values (from detector electronics or auto-detection)
|
||||
* 4. Estimated t0 values (last resort, may be unreliable for some facilities)
|
||||
*
|
||||
* The t0 vector is organized as [forward_0, backward_0, forward_1, backward_1, ...],
|
||||
* accommodating different numbers of forward/backward histograms in grouped data.
|
||||
*
|
||||
* Also handles addT0 values for runs being added together, ensuring proper time alignment
|
||||
* when combining multiple datasets.
|
||||
*
|
||||
* \param runData Pointer to raw run data containing file-based t0 information
|
||||
* \param globalBlock Pointer to GLOBAL block with default t0 settings
|
||||
* \param forwardHistoNo Vector of forward histogram indices (after red/green offset adjustment)
|
||||
* \param backwardHistoNo Vector of backward histogram indices (after red/green offset adjustment)
|
||||
*
|
||||
* \return True on success, false if critical t0 values cannot be determined
|
||||
*
|
||||
* \warning Estimated t0 values may be unreliable for certain facilities (e.g., LEM)
|
||||
*/
|
||||
Bool_t PRunAsymmetry::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &forwardHistoNo, PUIntVector &backwardHistoNo)
|
||||
{
|
||||
@@ -1855,17 +1974,30 @@ Bool_t PRunAsymmetry::GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalB
|
||||
// GetProperDataRange (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Get the proper data range, i.e. first/last good bin (fgb/lgb).
|
||||
* -# get fgb/lgb from the RUN block
|
||||
* -# if fgb/lgb still undefined, try to get it from the GLOBAL block
|
||||
* -# if fgb/lgb still undefined, try to estimate them.
|
||||
* \brief Determines the valid data range (first/last good bins) for analysis.
|
||||
*
|
||||
* \param runData raw run data needed to perform some crosschecks
|
||||
* \param histoNo histogram number (within a run). histoNo[0]: forward histogram number, histNo[1]: backward histogram number
|
||||
* The data range defines which portion of the histograms contains usable data,
|
||||
* excluding initial and final bins that may be noisy or affected by detector artifacts.
|
||||
*
|
||||
* <b>return:</b>
|
||||
* - true if everthing went smooth
|
||||
* - false, otherwise.
|
||||
* Determination hierarchy:
|
||||
* 1. RUN block data range settings (highest priority, run-specific)
|
||||
* 2. GLOBAL block data range (shared defaults)
|
||||
* 3. Estimated range (last resort: start = t0 + 10ns, end = histogram length)
|
||||
*
|
||||
* Performs validation checks:
|
||||
* - Ensures start < end (swaps if needed)
|
||||
* - Verifies bins are within histogram bounds [0, histogram size]
|
||||
* - Validates t0 is within valid range
|
||||
* - Clips end bin if it exceeds histogram length
|
||||
*
|
||||
* The good bins are stored in fGoodBins as [forward_start, forward_end, backward_start, backward_end].
|
||||
*
|
||||
* \param runData Pointer to raw run data for histogram size validation
|
||||
* \param histoNo Array of histogram indices: [0]=forward, [1]=backward
|
||||
*
|
||||
* \return True on success, false if data range is invalid or out of bounds
|
||||
*
|
||||
* \warning Estimated data ranges may not be appropriate for all experiments
|
||||
*/
|
||||
Bool_t PRunAsymmetry::GetProperDataRange(PRawRunData* runData, UInt_t histoNo[2])
|
||||
{
|
||||
@@ -2000,16 +2132,26 @@ Bool_t PRunAsymmetry::GetProperDataRange(PRawRunData* runData, UInt_t histoNo[2]
|
||||
// GetProperFitRange (private)
|
||||
//--------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Get the proper fit range. There are two possible fit range commands:
|
||||
* fit <start> <end> given in (usec), or
|
||||
* fit fgb+offset_0 lgb-offset_1 given in (bins), therefore it works the following way:
|
||||
* -# get fit range assuming given in time from RUN block
|
||||
* -# if fit range in RUN block is given in bins, replace start/end
|
||||
* -# if fit range is NOT given yet, try fit range assuming given in time from GLOBAL block
|
||||
* -# if fit range in GLOBAL block is given in bins, replace start/end
|
||||
* -# if still no fit range is given, use fgb/lgb.
|
||||
* \brief Determines the fit range for χ² minimization.
|
||||
*
|
||||
* \param globalBlock pointer to the GLOBAL block information form the msr-file.
|
||||
* The fit range defines the time window used for parameter fitting. It can be specified
|
||||
* in two formats:
|
||||
* - Time-based: "fit start end" in microseconds (e.g., "fit 0.1 10.0")
|
||||
* - Bin-based: "fit fgb+offset lgb-offset" using good bin boundaries (e.g., "fit fgb+5 lgb-10")
|
||||
*
|
||||
* Determination sequence:
|
||||
* 1. Checks RUN block for time-based fit range
|
||||
* 2. If RUN block specifies bin-based range, converts to time using fgb/lgb offsets
|
||||
* 3. Falls back to GLOBAL block fit range (time or bin-based) if RUN block is empty
|
||||
* 4. Uses full data range (fgb to lgb) if no fit range is specified
|
||||
*
|
||||
* Bin-based format allows fine-tuning relative to good bin boundaries:
|
||||
* - fgb+n: Start n bins after first good bin
|
||||
* - lgb-n: End n bins before last good bin
|
||||
*
|
||||
* The resulting fit range is stored as time values in fFitStartTime and fFitEndTime.
|
||||
*
|
||||
* \param globalBlock Pointer to GLOBAL block containing default fit range settings
|
||||
*/
|
||||
void PRunAsymmetry::GetProperFitRange(PMsrGlobalBlock *globalBlock)
|
||||
{
|
||||
|
||||
@@ -34,57 +34,250 @@
|
||||
|
||||
//---------------------------------------------------------------------------
|
||||
/**
|
||||
* <p>Class handling the asymmetry fit.
|
||||
* \brief Class for handling standard μSR asymmetry fits.
|
||||
*
|
||||
* PRunAsymmetry implements asymmetry fitting for conventional μSR experiments,
|
||||
* where the asymmetry is calculated from forward and backward detector histograms:
|
||||
*
|
||||
* \f[ A(t) = \frac{F(t) - \alpha B(t)}{F(t) + \alpha B(t)} \f]
|
||||
*
|
||||
* The class supports various configurations:
|
||||
* - α and β parameters (detector efficiency corrections)
|
||||
* - Background subtraction (fixed or estimated)
|
||||
* - Bin packing for improved statistics
|
||||
* - Rotating reference frame (RRF) data handling
|
||||
* - Multiple histogram grouping and run adding
|
||||
*
|
||||
* The α/β parameter configurations are:
|
||||
* - Tag 1: α = β = 1 (no corrections)
|
||||
* - Tag 2: α ≠ 1, β = 1 (forward/backward asymmetry correction)
|
||||
* - Tag 3: α = 1, β ≠ 1 (alternative correction)
|
||||
* - Tag 4: α ≠ 1, β ≠ 1 (both corrections active)
|
||||
*
|
||||
* \see PRunBase for the base class providing common functionality
|
||||
* \see PRunAsymmetryBNMR for β-NMR asymmetry (helicity-dependent)
|
||||
* \see PRunSingleHisto for single histogram fits
|
||||
*/
|
||||
class PRunAsymmetry : public PRunBase
|
||||
{
|
||||
public:
|
||||
/// Default constructor
|
||||
PRunAsymmetry();
|
||||
|
||||
/**
|
||||
* \brief Main constructor for μSR asymmetry fitting.
|
||||
* \param msrInfo Pointer to MSR file handler
|
||||
* \param rawData Pointer to raw run data handler
|
||||
* \param runNo Run number within the MSR file
|
||||
* \param tag Operation mode (kFit for fitting, kView for viewing)
|
||||
* \param theoAsData If true, calculate theory only at data points; if false, calculate additional points for Fourier
|
||||
*/
|
||||
PRunAsymmetry(PMsrHandler *msrInfo, PRunDataHandler *rawData, UInt_t runNo, EPMusrHandleTag tag, Bool_t theoAsData);
|
||||
|
||||
/// Destructor
|
||||
virtual ~PRunAsymmetry();
|
||||
|
||||
/**
|
||||
* \brief Calculates chi-square for the current parameter set.
|
||||
* \param par Parameter vector from MINUIT
|
||||
* \return Chi-square value
|
||||
*/
|
||||
virtual Double_t CalcChiSquare(const std::vector<Double_t>& par);
|
||||
|
||||
/**
|
||||
* \brief Calculates expected chi-square (for statistical analysis).
|
||||
* \param par Parameter vector from MINUIT
|
||||
* \return Expected chi-square value
|
||||
*/
|
||||
virtual Double_t CalcChiSquareExpected(const std::vector<Double_t>& par);
|
||||
|
||||
/**
|
||||
* \brief Calculates maximum likelihood estimator.
|
||||
* \param par Parameter vector from MINUIT
|
||||
* \return Maximum likelihood value
|
||||
*/
|
||||
virtual Double_t CalcMaxLikelihood(const std::vector<Double_t>& par);
|
||||
|
||||
/**
|
||||
* \brief Calculates theoretical asymmetry function.
|
||||
*
|
||||
* Computes the theory values for the μSR asymmetry based on the
|
||||
* current parameters and fit function.
|
||||
*/
|
||||
virtual void CalcTheory();
|
||||
|
||||
/**
|
||||
* \brief Returns the number of bins used in the fit.
|
||||
* \return Number of fit bins
|
||||
*/
|
||||
virtual UInt_t GetNoOfFitBins();
|
||||
|
||||
/**
|
||||
* \brief Sets the fit range in bins.
|
||||
* \param fitRange Fit range string (format depends on configuration)
|
||||
*/
|
||||
virtual void SetFitRangeBin(const TString fitRange);
|
||||
|
||||
/**
|
||||
* \brief Returns the first bin used in the fit.
|
||||
* \return Start time bin index
|
||||
*/
|
||||
virtual Int_t GetStartTimeBin() { return fStartTimeBin; }
|
||||
|
||||
/**
|
||||
* \brief Returns the last bin used in the fit.
|
||||
* \return End time bin index
|
||||
*/
|
||||
virtual Int_t GetEndTimeBin() { return fEndTimeBin; }
|
||||
|
||||
/**
|
||||
* \brief Returns the packing factor.
|
||||
* \return Number of bins combined (1 = no packing)
|
||||
*/
|
||||
virtual Int_t GetPacking() { return fPacking; }
|
||||
|
||||
/**
|
||||
* \brief Calculates the number of bins to be fitted.
|
||||
*
|
||||
* Determines fNoOfFitBins based on the fit range and data availability.
|
||||
*/
|
||||
virtual void CalcNoOfFitBins();
|
||||
|
||||
protected:
|
||||
/**
|
||||
* \brief Prepares all data for fitting or viewing.
|
||||
* \return True on success, false on error
|
||||
*
|
||||
* Main data preparation routine that handles background subtraction,
|
||||
* packing, and asymmetry calculation from forward/backward histograms.
|
||||
*/
|
||||
virtual Bool_t PrepareData();
|
||||
|
||||
/**
|
||||
* \brief Prepares data specifically for fitting.
|
||||
* \return True on success, false on error
|
||||
*
|
||||
* Sets up data structures for the fitting process, including determining
|
||||
* fit ranges and calculating the number of fit bins.
|
||||
*/
|
||||
virtual Bool_t PrepareFitData();
|
||||
|
||||
/**
|
||||
* \brief Prepares data for viewing/plotting.
|
||||
* \param runData Pointer to raw run data
|
||||
* \param histoNo Array of histogram numbers [0]=forward, [1]=backward
|
||||
* \return True on success, false on error
|
||||
*/
|
||||
virtual Bool_t PrepareViewData(PRawRunData* runData, UInt_t histoNo[2]);
|
||||
|
||||
/**
|
||||
* \brief Prepares rotating reference frame (RRF) data for viewing.
|
||||
* \param runData Pointer to raw run data
|
||||
* \param histoNo Array of histogram numbers [0]=forward, [1]=backward
|
||||
* \return True on success, false on error
|
||||
*
|
||||
* Special handling for RRF data where asymmetry is calculated in a
|
||||
* rotating coordinate frame.
|
||||
*/
|
||||
virtual Bool_t PrepareRRFViewData(PRawRunData* runData, UInt_t histoNo[2]);
|
||||
|
||||
private:
|
||||
UInt_t fAlphaBetaTag; ///< \f$ 1 \to \alpha = \beta = 1\f$; \f$ 2 \to \alpha \neq 1, \beta = 1\f$; \f$ 3 \to \alpha = 1, \beta \neq 1\f$; \f$ 4 \to \alpha \neq 1, \beta \neq 1\f$.
|
||||
UInt_t fNoOfFitBins; ///< number of bins to be be fitted
|
||||
Int_t fPacking; ///< packing for this particular run. Either given in the RUN- or GLOBAL-block.
|
||||
Bool_t fTheoAsData; ///< true=only calculate the theory points at the data points, false=calculate more points for the theory as compared to data are calculated which lead to 'nicer' Fouriers
|
||||
UInt_t fAlphaBetaTag; ///< Tag indicating α/β configuration: 1=both unity, 2=α free/β unity, 3=α unity/β free, 4=both free
|
||||
UInt_t fNoOfFitBins; ///< Number of bins included in the fit
|
||||
Int_t fPacking; ///< Bin packing factor from RUN or GLOBAL block
|
||||
Bool_t fTheoAsData; ///< If true, theory calculated only at data points; if false, extra points for nicer Fourier transforms
|
||||
|
||||
PDoubleVector fForward; ///< forward histo data
|
||||
PDoubleVector fForwardErr; ///< forward histo errors
|
||||
PDoubleVector fBackward; ///< backward histo data
|
||||
PDoubleVector fBackwardErr; ///< backward histo errors
|
||||
PDoubleVector fForward; ///< Forward detector histogram data
|
||||
PDoubleVector fForwardErr; ///< Forward detector histogram errors
|
||||
PDoubleVector fBackward; ///< Backward detector histogram data
|
||||
PDoubleVector fBackwardErr; ///< Backward detector histogram errors
|
||||
|
||||
Int_t fGoodBins[4]; ///< keep first/last good bins. 0=fgb, 1=lgb (forward); 2=fgb, 3=lgb (backward)
|
||||
Int_t fGoodBins[4]; ///< Good bin boundaries: [0]=forward first, [1]=forward last, [2]=backward first, [3]=backward last
|
||||
|
||||
Int_t fStartTimeBin; ///< bin at which the fit starts
|
||||
Int_t fEndTimeBin; ///< bin at which the fit ends
|
||||
Int_t fStartTimeBin; ///< First bin index for fitting
|
||||
Int_t fEndTimeBin; ///< Last bin index for fitting
|
||||
|
||||
/**
|
||||
* \brief Subtracts fixed background from histograms.
|
||||
*
|
||||
* Subtracts user-specified fixed background values from forward and backward histograms.
|
||||
* Background values are read from the MSR file (e.g., "backgr.fix 2 3" for forward/backward).
|
||||
*
|
||||
* Error propagation:
|
||||
* \f[ \Delta f_i^{\rm c} = \pm\sqrt{(\Delta f_i)^2 + (\Delta \mathrm{bkg})^2} = \pm\sqrt{f_i + \mathrm{bkg}} \f]
|
||||
*
|
||||
* where \f$ f_i^{\rm c} \f$ is the background-corrected histogram, \f$ f_i \f$ is the raw histogram,
|
||||
* and \f$ \mathrm{bkg} \f$ is the fixed background value.
|
||||
*
|
||||
* \return True on success, false if background values are missing
|
||||
*/
|
||||
Bool_t SubtractFixBkg();
|
||||
|
||||
/**
|
||||
* \brief Estimates and subtracts background from histograms.
|
||||
*
|
||||
* Calculates background from a specified bin range (typically before t0) and subtracts it
|
||||
* from forward and backward histograms. The background range is adjusted to align with
|
||||
* accelerator beam cycles when applicable (PSI, RAL, TRIUMF).
|
||||
*
|
||||
* Background calculation:
|
||||
* \f[ \mathrm{bkg} = \frac{1}{N}\sum_{i=0}^N f_i \f]
|
||||
*
|
||||
* Error propagation:
|
||||
* \f[ \Delta f_i^{\rm c} = \pm\sqrt{(\Delta f_i)^2 + (\Delta \mathrm{bkg})^2} = \pm\sqrt{f_i + (\Delta \mathrm{bkg})^2} \f]
|
||||
*
|
||||
* where \f$ N \f$ is the number of background bins and
|
||||
* \f[ \Delta \mathrm{bkg} = \pm\frac{1}{N}\sqrt{\sum_{i=0}^N f_i} \f]
|
||||
*
|
||||
* \return True on success, false if background range is out of bounds
|
||||
*/
|
||||
Bool_t SubtractEstimatedBkg();
|
||||
|
||||
/**
|
||||
* \brief Retrieves proper t0 values for all histograms.
|
||||
*
|
||||
* Determines t0 (time zero) values for forward and backward histograms from:
|
||||
* 1. Individual RUN block t0 entries
|
||||
* 2. GLOBAL block t0 values (fallback)
|
||||
* 3. Data file t0 values (final fallback)
|
||||
*
|
||||
* Also handles addT0 corrections for runs to be added together. The t0 values
|
||||
* are critical for proper alignment of histograms in time.
|
||||
*
|
||||
* \param runData Pointer to raw run data containing histogram information
|
||||
* \param globalBlock Pointer to global MSR block with default t0 values
|
||||
* \param forwardHisto Vector of forward histogram indices
|
||||
* \param backwardHistoNo Vector of backward histogram indices
|
||||
* \return True on success, false if t0 values cannot be determined
|
||||
*/
|
||||
virtual Bool_t GetProperT0(PRawRunData* runData, PMsrGlobalBlock *globalBlock, PUIntVector &forwardHisto, PUIntVector &backwardHistoNo);
|
||||
|
||||
/**
|
||||
* \brief Retrieves proper data range for histograms.
|
||||
*
|
||||
* Determines the "good bins" range for data analysis from:
|
||||
* 1. Individual RUN block data range settings
|
||||
* 2. GLOBAL block data range (fallback)
|
||||
* 3. Full histogram range (final fallback)
|
||||
*
|
||||
* The good bins define which portion of the histograms contains valid data,
|
||||
* excluding noisy or problematic regions at the start/end.
|
||||
*
|
||||
* \param runData Pointer to raw run data
|
||||
* \param histoNo Array of histogram numbers [0]=forward, [1]=backward
|
||||
* \return True on success, false on error
|
||||
*/
|
||||
virtual Bool_t GetProperDataRange(PRawRunData* runData, UInt_t histoNo[2]);
|
||||
|
||||
/**
|
||||
* \brief Determines the proper fit range from global block.
|
||||
*
|
||||
* Extracts fit range settings from the GLOBAL block if not specified in the RUN block.
|
||||
* The fit range defines the time window used for χ² minimization, specified either in
|
||||
* time units (μs) or bin numbers.
|
||||
*
|
||||
* \param globalBlock Pointer to global MSR block containing default fit range
|
||||
*/
|
||||
virtual void GetProperFitRange(PMsrGlobalBlock *globalBlock);
|
||||
};
|
||||
|
||||
|
||||
Reference in New Issue
Block a user