Start substract asymmetry implementation.

This commit is contained in:
Zaher Salman 2018-08-19 23:37:48 +02:00
parent e5c1450fc8
commit 782451e825
2 changed files with 286 additions and 464 deletions

View File

@ -164,10 +164,15 @@ PRunAsymmetryBNMR::PRunAsymmetryBNMR(PMsrHandler *msrInfo, PRunDataHandler *rawD
*/
PRunAsymmetryBNMR::~PRunAsymmetryBNMR()
{
fForward.clear();
fForwardErr.clear();
fBackward.clear();
fBackwardErr.clear();
fForwardp.clear();
fForwardpErr.clear();
fBackwardp.clear();
fBackwardpErr.clear();
fForwardm.clear();
fForwardmErr.clear();
fBackwardm.clear();
fBackwardmErr.clear();
}
//--------------------------------------------------------------------------
@ -595,32 +600,34 @@ Bool_t PRunAsymmetryBNMR::PrepareData()
}
// set forward/backward histo data of the first group
fForward.resize(forward[0].size());
fBackward.resize(backward[0].size());
for (UInt_t i=0; i<fForward.size(); i++) {
fForward[i] = forward[0][i];
fBackward[i] = backward[0][i];
fForwardp.resize(forward[0].size());
fBackwardp.resize(backward[0].size());
for (UInt_t i=0; i<fForwardp.size(); i++) {
fForwardp[i] = forward[0][i];
fBackwardp[i] = backward[0][i];
fForwardm[i] = forward[1][i];
fBackwardm[i] = backward[1][i];
}
// group histograms, add all the remaining forward histograms of the group
for (UInt_t i=1; i<forwardHistoNo.size(); i++) { // loop over the groupings
for (UInt_t j=0; j<runData->GetDataBin(forwardHistoNo[i])->size(); j++) { // loop over the bin indices
// make sure that the index stays within proper range
if ((j+fT0s[2*i]-fT0s[0] >= 0) && (j+fT0s[2*i]-fT0s[0] < runData->GetDataBin(forwardHistoNo[i])->size())) {
fForward[j] += forward[i][j+(Int_t)fT0s[2*i]-(Int_t)fT0s[0]];
}
}
}
// // group histograms, add all the remaining forward histograms of the group
// for (UInt_t i=1; i<forwardHistoNo.size(); i++) { // loop over the groupings
// for (UInt_t j=0; j<runData->GetDataBin(forwardHistoNo[i])->size(); j++) { // loop over the bin indices
// // make sure that the index stays within proper range
// if ((j+fT0s[2*i]-fT0s[0] >= 0) && (j+fT0s[2*i]-fT0s[0] < runData->GetDataBin(forwardHistoNo[i])->size())) {
// fForward[j] += forward[i][j+(Int_t)fT0s[2*i]-(Int_t)fT0s[0]];
// }
// }
// }
// group histograms, add all the remaining backward histograms of the group
for (UInt_t i=1; i<backwardHistoNo.size(); i++) { // loop over the groupings
for (UInt_t j=0; j<runData->GetDataBin(backwardHistoNo[i])->size(); j++) { // loop over the bin indices
// make sure that the index stays within proper range
if ((j+fT0s[2*i+1]-fT0s[1] >= 0) && (j+fT0s[2*i+1]-fT0s[1] < runData->GetDataBin(backwardHistoNo[i])->size())) {
fBackward[j] += backward[i][j+(Int_t)fT0s[2*i+1]-(Int_t)fT0s[1]];
}
}
}
// // group histograms, add all the remaining backward histograms of the group
// for (UInt_t i=1; i<backwardHistoNo.size(); i++) { // loop over the groupings
// for (UInt_t j=0; j<runData->GetDataBin(backwardHistoNo[i])->size(); j++) { // loop over the bin indices
// // make sure that the index stays within proper range
// if ((j+fT0s[2*i+1]-fT0s[1] >= 0) && (j+fT0s[2*i+1]-fT0s[1] < runData->GetDataBin(backwardHistoNo[i])->size())) {
// fBackward[j] += backward[i][j+(Int_t)fT0s[2*i+1]-(Int_t)fT0s[1]];
// }
// }
// }
// subtract background from histogramms ------------------------------------------
if (fRunInfo->GetBkgFix(0) == PMUSR_UNDEFINED) { // no fixed background given
@ -663,10 +670,7 @@ Bool_t PRunAsymmetryBNMR::PrepareData()
status = PrepareFitData();
break;
case kView:
if (fMsrInfo->GetMsrPlotList()->at(0).fRRFPacking == 0)
status = PrepareViewData(runData, histoNo);
else
status = PrepareRRFViewData(runData, histoNo);
status = PrepareViewData(runData, histoNo);
break;
default:
status = false;
@ -783,64 +787,90 @@ Bool_t PRunAsymmetryBNMR::SubtractEstimatedBkg()
}
// check if start is within histogram bounds
if ((start[0] < 0) || (start[0] >= fForward.size()) ||
(start[1] < 0) || (start[1] >= fBackward.size())) {
if ((start[0] < 0) || (start[0] >= fForwardp.size()) ||
(start[1] < 0) || (start[1] >= fBackwardp.size())) {
cerr << endl << ">> PRunAsymmetryBNMR::SubtractEstimatedBkg(): **ERROR** background bin values out of bound!";
cerr << endl << ">> histo lengths (f/b) = (" << fForward.size() << "/" << fBackward.size() << ").";
cerr << endl << ">> histo lengths (f/b) = (" << fForwardp.size() << "/" << fBackwardp.size() << ").";
cerr << endl << ">> background start (f/b) = (" << start[0] << "/" << start[1] << ").";
return false;
}
// check if end is within histogram bounds
if ((end[0] < 0) || (end[0] >= fForward.size()) ||
(end[1] < 0) || (end[1] >= fBackward.size())) {
if ((end[0] < 0) || (end[0] >= fForwardp.size()) ||
(end[1] < 0) || (end[1] >= fBackwardp.size())) {
cerr << endl << ">> PRunAsymmetryBNMR::SubtractEstimatedBkg(): **ERROR** background bin values out of bound!";
cerr << endl << ">> histo lengths (f/b) = (" << fForward.size() << "/" << fBackward.size() << ").";
cerr << endl << ">> histo lengths (f/b) = (" << fForwardp.size() << "/" << fBackwardp.size() << ").";
cerr << endl << ">> background end (f/b) = (" << end[0] << "/" << end[1] << ").";
return false;
}
// calculate background
Double_t bkg[2] = {0.0, 0.0};
Double_t errBkg[2] = {0.0, 0.0};
Double_t bkgp[2] = {0.0, 0.0};
Double_t errBkgp[2] = {0.0, 0.0};
Double_t bkgn[2] = {0.0, 0.0};
Double_t errBkgn[2] = {0.0, 0.0};
// forward
for (UInt_t i=start[0]; i<=end[0]; i++)
bkg[0] += fForward[i];
errBkg[0] = TMath::Sqrt(bkg[0])/(end[0] - start[0] + 1);
bkg[0] /= static_cast<Double_t>(end[0] - start[0] + 1);
cout << endl << ">> estimated forward histo background: " << bkg[0];
for (UInt_t i=start[0]; i<=end[0]; i++) {
bkgp[0] += fForwardp[i];
bkgm[0] += fForwardm[i];
}
errBkgp[0] = TMath::Sqrt(bkgp[0])/(end[0] - start[0] + 1);
bkgp[0] /= static_cast<Double_t>(end[0] - start[0] + 1);
cout << endl << ">> estimated pos hel forward histo background: " << bkgp[0];
errBkgm[0] = TMath::Sqrt(bkgp[0])/(end[0] - start[0] + 1);
bkgm[0] /= static_cast<Double_t>(end[0] - start[0] + 1);
cout << endl << ">> estimated neg hel forward histo background: " << bkgm[0];
// backward
for (UInt_t i=start[1]; i<=end[1]; i++)
bkg[1] += fBackward[i];
errBkg[1] = TMath::Sqrt(bkg[1])/(end[1] - start[1] + 1);
bkg[1] /= static_cast<Double_t>(end[1] - start[1] + 1);
cout << endl << ">> estimated backward histo background: " << bkg[1] << endl;
for (UInt_t i=start[1]; i<=end[1]; i++) {
bkgp[1] += fBackwardp[i];
bkgm[1] += fBackwardm[i];
}
errBkgp[1] = TMath::Sqrt(bkgp[1])/(end[1] - start[1] + 1);
bkgp[1] /= static_cast<Double_t>(end[1] - start[1] + 1);
cout << endl << ">> estimated pos hel backward histo background: " << bkgp[1] << endl;
errBkgm[1] = TMath::Sqrt(bkgm[1])/(end[1] - start[1] + 1);
bkgm[1] /= static_cast<Double_t>(end[1] - start[1] + 1);
cout << endl << ">> estimated neg hel backward histo background: " << bkgm[1] << endl;
// correct error for forward, backward
Double_t errVal = 0.0;
for (UInt_t i=0; i<fForward.size(); i++) {
if (fForward[i] > 0.0)
errVal = TMath::Sqrt(fForward[i]+errBkg[0]*errBkg[0]);
for (UInt_t i=0; i<fForwardp.size(); i++) {
if (fForwardp[i] > 0.0)
errVal = TMath::Sqrt(fForwardp[i]+errBkgp[0]*errBkgp[0]);
else
errVal = 1.0;
fForwardErr.push_back(errVal);
if (fBackward[i] > 0.0)
errVal = TMath::Sqrt(fBackward[i]+errBkg[1]*errBkg[1]);
fForwardpErr.push_back(errVal);
if (fBackwardp[i] > 0.0)
errVal = TMath::Sqrt(fBackwardp[i]+errBkgp[1]*errBkgp[1]);
else
errVal = 1.0;
fBackwardErr.push_back(errVal);
fBackwardpErr.push_back(errVal);
if (fForwardm[i] > 0.0)
errVal = TMath::Sqrt(fForwardm[i]+errBkgm[0]*errBkgm[0]);
else
errVal = 1.0;
fForwardmErr.push_back(errVal);
if (fBackwardm[i] > 0.0)
errVal = TMath::Sqrt(fBackwardm[i]+errBkgm[1]*errBkgm[1]);
else
errVal = 1.0;
fBackwardmErr.push_back(errVal);
}
// subtract background from data
for (UInt_t i=0; i<fForward.size(); i++) {
fForward[i] -= bkg[0];
fBackward[i] -= bkg[1];
for (UInt_t i=0; i<fForwardp.size(); i++) {
fForwardp[i] -= bkgp[0];
fBackwardp[i] -= bkgp[1];
fForwardm[i] -= bkgm[0];
fBackwardm[i] -= bkgm[1];
}
fRunInfo->SetBkgEstimated(bkg[0], 0);
fRunInfo->SetBkgEstimated(bkg[1], 1);
fRunInfo->SetBkgEstimated(bkgp[0], 0);
fRunInfo->SetBkgEstimated(bkgp[1], 1);
fRunInfo->SetBkgEstimated(bkgm[0], 3);
fRunInfo->SetBkgEstimated(bkgm[1], 4);
return true;
}
@ -865,96 +895,143 @@ Bool_t PRunAsymmetryBNMR::PrepareFitData()
// first rebin the data, than calculate the asymmetry
// everything looks fine, hence fill packed forward and backward histo
PRunData forwardPacked;
PRunData backwardPacked;
Double_t value = 0.0;
Double_t error = 0.0;
PRunData forwardpPacked;
PRunData backwardpPacked;
PRunData forwardmPacked;
PRunData backwarmpPacked;
Double_t valuep = 0.0;
Double_t errorp = 0.0;
Double_t valuem = 0.0;
Double_t errorm = 0.0;
// forward
for (Int_t i=fGoodBins[0]; i<fGoodBins[1]; i++) {
if (fPacking == 1) {
forwardPacked.AppendValue(fForward[i]);
forwardPacked.AppendErrorValue(fForwardErr[i]);
forwardpPacked.AppendValue(fForwardp[i]);
forwardpPacked.AppendErrorValue(fForwardpErr[i]);
forwardmPacked.AppendValue(fForwardm[i]);
forwardmPacked.AppendErrorValue(fForwardmErr[i]);
} else { // packed data, i.e. fPacking > 1
if (((i-fGoodBins[0]) % fPacking == 0) && (i != fGoodBins[0])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fPacking;
forwardPacked.AppendValue(value);
if (value == 0.0)
forwardPacked.AppendErrorValue(1.0);
else
forwardPacked.AppendErrorValue(TMath::Sqrt(error)/fPacking);
value = 0.0;
error = 0.0;
valuep /= fPacking;
valuem /= fPacking;
forwardpPacked.AppendValue(valuep);
forwardmPacked.AppendValue(valuem);
if (valuep == 0.0) {
forwardpPacked.AppendErrorValue(1.0);
} else {
forwardpPacked.AppendErrorValue(TMath::Sqrt(errorp)/fPacking);
}
if (valuem == 0.0) {
forwardmPacked.AppendErrorValue(1.0);
} else {
forwardmPacked.AppendErrorValue(TMath::Sqrt(errorm)/fPacking);
}
valuep = 0.0;
errorp = 0.0;
valuem = 0.0;
errorm = 0.0;
}
value += fForward[i];
error += fForwardErr[i]*fForwardErr[i];
valuep += fForwardp[i];
errorp += fForwardpErr[i]*fForwardpErr[i];
valuem += fForwardm[i];
errorm += fForwardmErr[i]*fForwardmErr[i];
}
}
// backward
for (Int_t i=fGoodBins[2]; i<fGoodBins[3]; i++) {
if (fPacking == 1) {
backwardPacked.AppendValue(fBackward[i]);
backwardPacked.AppendErrorValue(fBackwardErr[i]);
backwardpPacked.AppendValue(fBackwardp[i]);
backwardpPacked.AppendErrorValue(fBackwardpErr[i]);
backwardmPacked.AppendValue(fBackwardm[i]);
backwardmPacked.AppendErrorValue(fBackwardmErr[i]);
} else { // packed data, i.e. fPacking > 1
if (((i-fGoodBins[2]) % fPacking == 0) && (i != fGoodBins[2])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= fPacking;
backwardPacked.AppendValue(value);
if (value == 0.0)
backwardPacked.AppendErrorValue(1.0);
else
backwardPacked.AppendErrorValue(TMath::Sqrt(error)/fPacking);
value = 0.0;
error = 0.0;
valuep /= fPacking;
valuem /= fPacking;
backwardpPacked.AppendValue(valuep);
backwardmPacked.AppendValue(valuem);
if (valuep == 0.0) {
backwardpPacked.AppendErrorValue(1.0);
} else {
backwardpPacked.AppendErrorValue(TMath::Sqrt(errorp)/fPacking);
}
if (valuem == 0.0) {
backwardmPacked.AppendErrorValue(1.0);
} else {
backwardmPacked.AppendErrorValue(TMath::Sqrt(errorm)/fPacking);
}
valuep = 0.0;
errorp = 0.0;
valuem = 0.0;
errorm = 0.0;
}
value += fBackward[i];
error += fBackwardErr[i]*fBackwardErr[i];
valuep += fBackwardp[i];
errorp += fBackwardpErr[i]*fBackwardpErr[i];
valuem += fBackwardm[i];
errorm += fBackwardmErr[i]*fBackwardmErr[i];
}
}
// check if packed forward and backward hist have the same size, otherwise take the minimum size
UInt_t noOfBins = forwardPacked.GetValue()->size();
if (forwardPacked.GetValue()->size() != backwardPacked.GetValue()->size()) {
if (forwardPacked.GetValue()->size() > backwardPacked.GetValue()->size())
noOfBins = backwardPacked.GetValue()->size();
UInt_t noOfBins = forwardpPacked.GetValue()->size();
if (forwardpPacked.GetValue()->size() != backwardpPacked.GetValue()->size()) {
if (forwardpPacked.GetValue()->size() > backwardpPacked.GetValue()->size())
noOfBins = backwardpPacked.GetValue()->size();
}
// form asymmetry including error propagation
Double_t asym;
Double_t f, b, ef, eb;
Double_t asym,error;
Double_t fp, bp, efp, ebp;
Double_t fm, bm, efm, ebm;
// fill data time start, and step
// data start at data_start-t0 shifted by (pack-1)/2
fData.SetDataTimeStart(fTimeResolution*((Double_t)fGoodBins[0]-fT0s[0]+(Double_t)(fPacking-1)/2.0));
fData.SetDataTimeStep(fTimeResolution*(Double_t)fPacking);
for (UInt_t i=0; i<noOfBins; i++) {
// to make the formulae more readable
f = forwardPacked.GetValue()->at(i);
b = backwardPacked.GetValue()->at(i);
ef = forwardPacked.GetError()->at(i);
eb = backwardPacked.GetError()->at(i);
fp = forwardpPacked.GetValue()->at(i);
bp = backwardpPacked.GetValue()->at(i);
efp = forwardpPacked.GetError()->at(i);
ebp = backwardpPacked.GetError()->at(i);
fm = forwardmPacked.GetValue()->at(i);
bm = backwardmPacked.GetValue()->at(i);
efm = forwardmPacked.GetError()->at(i);
ebm = backwardmPacked.GetError()->at(i);
// check that there are indeed bins
if (f+b != 0.0)
asym = (f-b) / (f+b);
if (fp+bp != 0.0)
asym = (fp-bp) / (fp+bp) - (fm-bm) / (fm+bm);
else
asym = 0.0;
fData.AppendValue(asym);
// calculate the error
if (f+b != 0.0)
error = 2.0/((f+b)*(f+b))*TMath::Sqrt(b*b*ef*ef+eb*eb*f*f);
if (fp+bp != 0.0)
errorp = 2.0/((fp+bp)*(fp+bp))*TMath::Sqrt(bp*bp*efp*efp+ebp*ebp*fp*fp);
else
error = 1.0;
errorp = 1.0;
if (fm+bm != 0.0)
errorm = 2.0/((fm+bm)*(fm+bm))*TMath::Sqrt(bm*bm*efm*efm+ebm*ebm*fm*fm);
else
errorp = 1.0;
error = TMath::Sqrt(errorp*errorp+errorm*errorm);
fData.AppendErrorValue(error);
}
CalcNoOfFitBins();
// clean up
fForward.clear();
fForwardErr.clear();
fBackward.clear();
fBackwardErr.clear();
fForwardp.clear();
fForwardpErr.clear();
fBackwardp.clear();
fBackwardpErr.clear();
fForwardm.clear();
fForwardmErr.clear();
fBackwardm.clear();
fBackwardmErr.clear();
return true;
}
@ -1065,67 +1142,100 @@ Bool_t PRunAsymmetryBNMR::PrepareViewData(PRawRunData* runData, UInt_t histoNo[2
}
// everything looks fine, hence fill packed forward and backward histo
PRunData forwardPacked;
PRunData backwardPacked;
Double_t value = 0.0;
Double_t error = 0.0;
PRunData forwardpPacked;
PRunData backwardpPacked;
PRunData forwardmPacked;
PRunData backwardmPacked;
Double_t valuep = 0.0;
Double_t errorp = 0.0;
Double_t valuem = 0.0;
Double_t errorm = 0.0;
// forward
for (Int_t i=start[0]; i<end[0]; i++) {
if (packing == 1) {
forwardPacked.AppendValue(fForward[i]);
forwardPacked.AppendErrorValue(fForwardErr[i]);
forwardpPacked.AppendValue(fForwardp[i]);
forwardpPacked.AppendErrorValue(fForwardpErr[i]);
forwardmPacked.AppendValue(fForwardm[i]);
forwardmPacked.AppendErrorValue(fForwardmErr[i]);
} else { // packed data, i.e. packing > 1
if (((i-start[0]) % packing == 0) && (i != start[0])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= packing;
forwardPacked.AppendValue(value);
if (value == 0.0)
forwardPacked.AppendErrorValue(1.0);
else
forwardPacked.AppendErrorValue(TMath::Sqrt(error)/packing);
value = 0.0;
error = 0.0;
valuep /= packing;
forwardpPacked.AppendValue(valuep);
valuem /= packing;
forwardmPacked.AppendValue(valuem);
if (valuep == 0.0) {
forwardpPacked.AppendErrorValue(1.0);
} else {
forwardpPacked.AppendErrorValue(TMath::Sqrt(errorp)/packing);
}
if (valuem == 0.0) {
forwardmPacked.AppendErrorValue(1.0);
} else {
forwardmPacked.AppendErrorValue(TMath::Sqrt(errorm)/packing);
}
valuep = 0.0;
errorp = 0.0;
valuem = 0.0;
errorm = 0.0;
}
value += fForward[i];
error += fForwardErr[i]*fForwardErr[i];
valuep += fForwardp[i];
errorp += fForwardpErr[i]*fForwardpErr[i];
valuem += fForwardm[i];
errorm += fForwardmErr[i]*fForwardmErr[i];
}
}
// backward
for (Int_t i=start[1]; i<end[1]; i++) {
if (packing == 1) {
backwardPacked.AppendValue(fBackward[i]);
backwardPacked.AppendErrorValue(fBackwardErr[i]);
backwardpPacked.AppendValue(fBackwardp[i]);
backwardpPacked.AppendErrorValue(fBackwardpErr[i]);
backwardmPacked.AppendValue(fBackwardm[i]);
backwardmPacked.AppendErrorValue(fBackwardmErr[i]);
} else { // packed data, i.e. packing > 1
if (((i-start[1]) % packing == 0) && (i != start[1])) { // fill data
// in order that after rebinning the fit does not need to be redone (important for plots)
// the value is normalize to per bin
value /= packing;
backwardPacked.AppendValue(value);
if (value == 0.0)
backwardPacked.AppendErrorValue(1.0);
else
backwardPacked.AppendErrorValue(TMath::Sqrt(error)/packing);
value = 0.0;
error = 0.0;
valuep /= packing;
valuem /= packing;
backwardpPacked.AppendValue(valuep);
backwardmPacked.AppendValue(valuem);
if (valuep == 0.0) {
backwardpPacked.AppendErrorValue(1.0);
} else {
backwardpPacked.AppendErrorValue(TMath::Sqrt(errorp)/packing);
}
if (valuem == 0.0) {
backwardmPacked.AppendErrorValue(1.0);
} else {
backwardmPacked.AppendErrorValue(TMath::Sqrt(errorm)/packing);
}
valuep = 0.0;
errorp = 0.0;
valuem = 0.0;
errorm = 0.0;
}
value += fBackward[i];
error += fBackwardErr[i]*fBackwardErr[i];
valuep += fBackwardp[i];
errorp += fBackwardpErr[i]*fBackwardpErr[i];
valuem += fBackwardm[i];
errorm += fBackwardmErr[i]*fBackwardmErr[i];
}
}
// check if packed forward and backward hist have the same size, otherwise take the minimum size
UInt_t noOfBins = forwardPacked.GetValue()->size();
if (forwardPacked.GetValue()->size() != backwardPacked.GetValue()->size()) {
if (forwardPacked.GetValue()->size() > backwardPacked.GetValue()->size())
noOfBins = backwardPacked.GetValue()->size();
UInt_t noOfBins = forwardpPacked.GetValue()->size();
if (forwardpPacked.GetValue()->size() != backwardpPacked.GetValue()->size()) {
if (forwardpPacked.GetValue()->size() > backwardpPacked.GetValue()->size())
noOfBins = backwardpPacked.GetValue()->size();
}
// form asymmetry including error propagation
Double_t asym;
Double_t f, b, ef, eb, alpha = 1.0, beta = 1.0;
Double_t fp, bp, efp, ebp, alpha = 1.0, beta = 1.0;
Double_t fm, bm, efm, ebm;
// set data time start, and step
// data start at data_start-t0
fData.SetDataTimeStart(fTimeResolution*((Double_t)start[0]-t0[0]+(Double_t)(packing-1)/2.0));
@ -1153,33 +1263,46 @@ Bool_t PRunAsymmetryBNMR::PrepareViewData(PRawRunData* runData, UInt_t histoNo[2
break;
}
for (UInt_t i=0; i<forwardPacked.GetValue()->size(); i++) {
for (UInt_t i=0; i<forwardpPacked.GetValue()->size(); i++) {
// to make the formulae more readable
f = forwardPacked.GetValue()->at(i);
b = backwardPacked.GetValue()->at(i);
ef = forwardPacked.GetError()->at(i);
eb = backwardPacked.GetError()->at(i);
fp = forwardpPacked.GetValue()->at(i);
bp = backwardpPacked.GetValue()->at(i);
efp = forwardpPacked.GetError()->at(i);
ebp = backwardpPacked.GetError()->at(i);
fm = forwardmPacked.GetValue()->at(i);
bm = backwardmPacked.GetValue()->at(i);
efm = forwardmPacked.GetError()->at(i);
ebm = backwardmPacked.GetError()->at(i);
// check that there are indeed bins
if (f+b != 0.0)
asym = (alpha*f-b) / (alpha*beta*f+b);
if (fp+bp != 0.0)
asym = (alpha*fp-bp) / (alpha*beta*fp+bp) - (alpha*fm-bm) / (alpha*beta*fm+bm);
else
asym = 0.0;
fData.AppendValue(asym);
// calculate the error
if (f+b != 0.0)
error = 2.0/((f+b)*(f+b))*TMath::Sqrt(b*b*ef*ef+eb*eb*f*f);
if (fp+bp != 0.0)
errorp = 2.0/((fp+bp)*(fp+bp))*TMath::Sqrt(bp*bp*efp*efp+ebp*ebp*fp*fp);
else
error = 1.0;
errorp = 1.0;
if (fm+bm != 0.0)
errorm = 2.0/((fm+bm)*(fm+bm))*TMath::Sqrt(bm*bm*efm*efm+ebm*ebm*fm*fm);
else
errorm = 1.0;
error = TMath::Sqrt(errorp*errorp+errorm*errorm);
fData.AppendErrorValue(error);
}
CalcNoOfFitBins();
// clean up
fForward.clear();
fForwardErr.clear();
fBackward.clear();
fBackwardErr.clear();
fForwardp.clear();
fForwardpErr.clear();
fBackwardp.clear();
fBackwardpErr.clear();
fForwardm.clear();
fForwardmErr.clear();
fBackwardm.clear();
fBackwardmErr.clear();
// fill theory vector for kView
// calculate functions
@ -1212,311 +1335,6 @@ Bool_t PRunAsymmetryBNMR::PrepareViewData(PRawRunData* runData, UInt_t histoNo[2
return true;
}
//--------------------------------------------------------------------------
// PrepareRRFViewData (protected)
//--------------------------------------------------------------------------
/**
* <p> Prepares the RRF data set for visual representation. This is done the following way:
* -# make all necessary checks
* -# build the asymmetry, \f$ A(t) \f$, WITHOUT packing.
* -# \f$ A_R(t) = A(t) \cdot 2 \cos(\omega_R t + \phi_R) \f$
* -# do the packing of \f$ A_R(t) \f$
* -# calculate theory, \f$ T(t) \f$, as close as possible to the time resolution [compatible with the RRF frequency]
* -# \f$ T_R(t) = T(t) \cdot 2 \cos(\omega_R t + \phi_R) \f$
* -# do the packing of \f$ T_R(t) \f$
* -# calculate the Kaiser FIR filter coefficients
* -# filter \f$ T_R(t) \f$.
*
* \param runData raw run data needed to perform some crosschecks
* \param histoNo array of the histo numbers form which to build the asymmetry
*/
Bool_t PRunAsymmetryBNMR::PrepareRRFViewData(PRawRunData* runData, UInt_t histoNo[2])
{
// feed the parameter vector
std::vector<Double_t> par;
PMsrParamList *paramList = fMsrInfo->GetMsrParamList();
for (UInt_t i=0; i<paramList->size(); i++)
par.push_back((*paramList)[i].fValue);
// ------------------------------------------------------------
// 1. make all necessary checks
// ------------------------------------------------------------
// first get start data, end data, and t0
Int_t start[2] = {fGoodBins[0], fGoodBins[2]};
Int_t end[2] = {fGoodBins[1], fGoodBins[3]};
Int_t t0[2] = {(Int_t)fT0s[0], (Int_t)fT0s[1]};
UInt_t packing = fMsrInfo->GetMsrPlotList()->at(0).fRRFPacking;
// check if the data ranges and t0's between forward/backward are compatible
Int_t fgb[2];
if (start[0]-t0[0] != start[1]-t0[1]) { // wrong fgb aligning
if (abs(start[0]-t0[0]) > abs(start[1]-t0[1])) {
fgb[0] = start[0];
fgb[1] = t0[1] + start[0]-t0[0];
cerr << endl << ">> PRunAsymmetryBNMR::PrepareRRFViewData(): **WARNING** needed to shift backward fgb from ";
cerr << start[1] << " to " << fgb[1] << endl;
} else {
fgb[0] = t0[0] + start[1]-t0[1];
fgb[1] = start[1];
cerr << endl << ">> PRunAsymmetryBNMR::PrepareRRFViewData(): **WARNING** needed to shift forward fgb from ";
cerr << start[1] << " to " << fgb[0] << endl;
}
} else { // fgb aligning is correct
fgb[0] = start[0];
fgb[1] = start[1];
}
Int_t val = fgb[0]-packing*(fgb[0]/packing);
do {
if (fgb[1] - fgb[0] < 0)
val += packing;
} while (val + fgb[1] - fgb[0] < 0);
start[0] = val;
start[1] = val + fgb[1] - fgb[0];
// make sure that there are equal number of rebinned bins in forward and backward
UInt_t noOfBins0 = runData->GetDataBin(histoNo[0])->size()-start[0];
UInt_t noOfBins1 = runData->GetDataBin(histoNo[1])->size()-start[1];
if (noOfBins0 > noOfBins1)
noOfBins0 = noOfBins1;
end[0] = start[0] + noOfBins0;
end[1] = start[1] + noOfBins0;
// check if start, end, and t0 make any sense
// 1st check if start and end are in proper order
for (UInt_t i=0; i<2; i++) {
if (end[i] < start[i]) { // need to swap them
Int_t keep = end[i];
end[i] = start[i];
start[i] = keep;
}
// 2nd check if start is within proper bounds
if ((start[i] < 0) || (start[i] > (Int_t)runData->GetDataBin(histoNo[i])->size())) {
cerr << endl << ">> PRunAsymmetryBNMR::PrepareRRFViewData(): **ERROR** start data bin doesn't make any sense!";
cerr << endl;
return false;
}
// 3rd check if end is within proper bounds
if ((end[i] < 0) || (end[i] > (Int_t)runData->GetDataBin(histoNo[i])->size())) {
cerr << endl << ">> PRunAsymmetryBNMR::PrepareRRFViewData(): **ERROR** end data bin doesn't make any sense!";
cerr << endl;
return false;
}
// 4th check if t0 is within proper bounds
if ((t0[i] < 0) || (t0[i] > (Int_t)runData->GetDataBin(histoNo[i])->size())) {
cerr << endl << ">> PRunAsymmetryBNMR::PrepareRRFViewData(): **ERROR** t0 data bin doesn't make any sense!";
cerr << endl;
return false;
}
}
// ------------------------------------------------------------
// 2. build the asymmetry [A(t)] WITHOUT packing.
// ------------------------------------------------------------
PDoubleVector forward, forwardErr;
PDoubleVector backward, backwardErr;
Double_t error = 0.0;
// forward
for (Int_t i=start[0]; i<end[0]; i++) {
forward.push_back(fForward[i]);
forwardErr.push_back(fForwardErr[i]);
}
// backward
for (Int_t i=start[1]; i<end[1]; i++) {
backward.push_back(fBackward[i]);
backwardErr.push_back(fBackwardErr[i]);
}
// check if packed forward and backward hist have the same size, otherwise take the minimum size
UInt_t noOfBins = forward.size();
if (forward.size() != backward.size()) {
if (forward.size() > backward.size())
noOfBins = backward.size();
}
// form asymmetry including error propagation
PDoubleVector asymmetry, asymmetryErr;
Double_t asym;
Double_t f, b, ef, eb, alpha = 1.0, beta = 1.0;
// get the proper alpha and beta
switch (fAlphaBetaTag) {
case 1: // alpha == 1, beta == 1
alpha = 1.0;
beta = 1.0;
break;
case 2: // alpha != 1, beta == 1
alpha = par[fRunInfo->GetAlphaParamNo()-1];
beta = 1.0;
break;
case 3: // alpha == 1, beta != 1
alpha = 1.0;
beta = par[fRunInfo->GetBetaParamNo()-1];
break;
case 4: // alpha != 1, beta != 1
alpha = par[fRunInfo->GetAlphaParamNo()-1];
beta = par[fRunInfo->GetBetaParamNo()-1];
break;
default:
break;
}
for (UInt_t i=0; i<noOfBins; i++) {
// to make the formulae more readable
f = forward[i];
b = backward[i];
ef = forwardErr[i];
eb = backwardErr[i];
// check that there are indeed bins
if (f+b != 0.0)
asym = (alpha*f-b) / (alpha*beta*f+b);
else
asym = 0.0;
asymmetry.push_back(asym);
// calculate the error
if (f+b != 0.0)
error = 2.0/((f+b)*(f+b))*TMath::Sqrt(b*b*ef*ef+eb*eb*f*f);
else
error = 1.0;
asymmetryErr.push_back(error);
}
// clean up
fForward.clear();
fForwardErr.clear();
fBackward.clear();
fBackwardErr.clear();
// ------------------------------------------------------------
// 3. A_R(t) = A(t) * 2 cos(w_R t + phi_R)
// ------------------------------------------------------------
// check which units shall be used
Double_t gammaRRF = 0.0, wRRF = 0.0, phaseRRF = 0.0;
Double_t time;
switch (fMsrInfo->GetMsrPlotList()->at(0).fRRFUnit) {
case RRF_UNIT_kHz:
gammaRRF = TMath::TwoPi()*1.0e-3;
break;
case RRF_UNIT_MHz:
gammaRRF = TMath::TwoPi();
break;
case RRF_UNIT_Mcs:
gammaRRF = 1.0;
break;
case RRF_UNIT_G:
gammaRRF = GAMMA_BAR_MUON*TMath::TwoPi();
break;
case RRF_UNIT_T:
gammaRRF = GAMMA_BAR_MUON*TMath::TwoPi()*1.0e4;
break;
default:
gammaRRF = TMath::TwoPi();
break;
}
wRRF = gammaRRF * fMsrInfo->GetMsrPlotList()->at(0).fRRFFreq;
phaseRRF = fMsrInfo->GetMsrPlotList()->at(0).fRRFPhase / 180.0 * TMath::Pi();
for (UInt_t i=0; i<asymmetry.size(); i++) {
time = fTimeResolution*(static_cast<Double_t>(start[0])-t0[0]+static_cast<Double_t>(i));
asymmetry[i] *= 2.0*TMath::Cos(wRRF*time+phaseRRF);
}
// ------------------------------------------------------------
// 4. do the packing of A_R(t)
// ------------------------------------------------------------
Double_t value = 0.0;
error = 0.0;
for (UInt_t i=0; i<asymmetry.size(); i++) {
if ((i % packing == 0) && (i != 0)) {
value /= packing;
fData.AppendValue(value);
fData.AppendErrorValue(TMath::Sqrt(error)/packing);
value = 0.0;
error = 0.0;
}
value += asymmetry[i];
error += asymmetryErr[i]*asymmetryErr[i];
}
// set data time start, and step
// data start at data_start-t0
fData.SetDataTimeStart(fTimeResolution*(start[0]-t0[0]+static_cast<Double_t>(packing-1)/2.0));
fData.SetDataTimeStep(fTimeResolution*static_cast<Double_t>(packing));
// ------------------------------------------------------------
// 5. calculate theory [T(t)] as close as possible to the time resolution [compatible with the RRF frequency]
// 6. T_R(t) = T(t) * 2 cos(w_R t + phi_R)
// ------------------------------------------------------------
UInt_t rebinRRF = static_cast<UInt_t>((TMath::Pi()/2.0/wRRF)/fTimeResolution); // RRF time resolution / data time resolution
fData.SetTheoryTimeStart(fData.GetDataTimeStart());
fData.SetTheoryTimeStep(TMath::Pi()/2.0/wRRF/rebinRRF); // = theory time resolution as close as possible to the data time resolution compatible with wRRF
// calculate functions
for (Int_t i=0; i<fMsrInfo->GetNoOfFuncs(); i++) {
fFuncValues[i] = fMsrInfo->EvalFunc(fMsrInfo->GetFuncNo(i), *fRunInfo->GetMap(), par);
}
Double_t theoryValue;
for (UInt_t i=0; i<asymmetry.size(); i++) {
time = fData.GetTheoryTimeStart() + static_cast<Double_t>(i)*fData.GetTheoryTimeStep();
theoryValue = fTheory->Func(time, par, fFuncValues);
theoryValue *= 2.0*TMath::Cos(wRRF * time + phaseRRF);
if (fabs(theoryValue) > 10.0) { // dirty hack needs to be fixed!!
theoryValue = 0.0;
}
fData.AppendTheoryValue(theoryValue);
}
// ------------------------------------------------------------
// 7. do the packing of T_R(t)
// ------------------------------------------------------------
PDoubleVector theo;
Double_t dval = 0.0;
for (UInt_t i=0; i<fData.GetTheory()->size(); i++) {
if ((i % rebinRRF == 0) && (i != 0)) {
theo.push_back(dval/rebinRRF);
dval = 0.0;
}
dval += fData.GetTheory()->at(i);
}
fData.ReplaceTheory(theo);
theo.clear();
// set the theory time start and step size
fData.SetTheoryTimeStart(fData.GetTheoryTimeStart()+static_cast<Double_t>(rebinRRF-1)*fData.GetTheoryTimeStep()/2.0);
fData.SetTheoryTimeStep(rebinRRF*fData.GetTheoryTimeStep());
// ------------------------------------------------------------
// 8. calculate the Kaiser FIR filter coefficients
// ------------------------------------------------------------
CalculateKaiserFilterCoeff(wRRF, 60.0, 0.2); // w_c = wRRF, A = -20 log_10(delta), Delta w / w_c = (w_s - w_p) / (2 w_c)
// ------------------------------------------------------------
// 9. filter T_R(t)
// ------------------------------------------------------------
FilterTheo();
// clean up
par.clear();
forward.clear();
forwardErr.clear();
backward.clear();
backwardErr.clear();
asymmetry.clear();
asymmetryErr.clear();
return true;
}
//--------------------------------------------------------------------------
// GetProperT0 (private)

View File

@ -68,10 +68,14 @@ class PRunAsymmetryBNMR : public PRunBase
UInt_t fNoOfFitBins; ///< number of bins to be be fitted
Int_t fPacking; ///< packing for this particular run. Either given in the RUN- or GLOBAL-block.
PDoubleVector fForward; ///< forward histo data
PDoubleVector fForwardErr; ///< forward histo errors
PDoubleVector fBackward; ///< backward histo data
PDoubleVector fBackwardErr; ///< backward histo errors
PDoubleVector fForwardp; ///< pos hel forward histo data
PDoubleVector fForwardpErr; ///< pos hel forward histo errors
PDoubleVector fBackwardp; ///< pos hel backward histo data
PDoubleVector fBackwardpErr; ///< pos hel backward histo errors
PDoubleVector fForwardm; ///< neg hel forward histo data
PDoubleVector fForwardmErr; ///< neg hel forward histo errors
PDoubleVector fBackwardm; ///< neg hel backward histo data
PDoubleVector fBackwardmErr; ///< neg hel backward histo errors
Int_t fGoodBins[4]; ///< keep first/last good bins. 0=fgb, 1=lgb (forward); 2=fgb, 3=lgb (backward)