added a first version of a optimized phase correction for the real Fourier transform

This commit is contained in:
suter_a 2016-12-18 10:37:50 +01:00
parent c768c27898
commit 63516fc499
7 changed files with 368 additions and 178 deletions

View File

@ -94,8 +94,8 @@ void PFTPhaseCorrection::Minimize()
// create Minuit2 parameters
ROOT::Minuit2::MnUserParameters upar;
upar.Add("c0", fPh_c0, 0.5);
upar.Add("c1", fPh_c1, 0.5);
upar.Add("c0", fPh_c0, 2.0);
upar.Add("c1", fPh_c1, 2.0);
// create minimizer
ROOT::Minuit2::MnMinimize mn_min(*this, upar);
@ -296,7 +296,7 @@ PFourier::PFourier(TH1F *data, Int_t unitTag, Double_t startTime, Double_t endTi
fValid = true;
fIn = 0;
fOut = 0;
fPhCorrectedReFT = 0;
//as fPhCorrectedReFT = 0;
fApodization = F_APODIZATION_NONE;
@ -384,8 +384,8 @@ PFourier::~PFourier()
fftw_free(fIn);
if (fOut)
fftw_free(fOut);
if (fPhCorrectedReFT)
delete fPhCorrectedReFT;
//as if (fPhCorrectedReFT)
//as delete fPhCorrectedReFT;
}
//--------------------------------------------------------------------------
@ -485,73 +485,79 @@ TH1F* PFourier::GetRealFourier(const Double_t scale)
}
//--------------------------------------------------------------------------
// GetPhaseOptRealFourier (public)
// GetPhaseOptRealFourier (public, static)
//--------------------------------------------------------------------------
/**
* <p>returns the phase corrected real Fourier transform.
*
* \return the TH1F histo of the phase 'optimzed' real Fourier transform.
*
* \param re real part Fourier histogram
* \param im imaginary part Fourier histogram
* \param phase return value of the optimal phase dispersion phase[0]+phase[1]*i/N
* \param scale normalisation factor
* \param min minimal freq / field from which to optimise. Given in the choosen unit.
* \param max maximal freq / field up to which to optimise. Given in the choosen unit.
*/
TH1F* PFourier::GetPhaseOptRealFourier(vector<Double_t> &phase, const Double_t scale, const Double_t min, const Double_t max)
TH1F* PFourier::GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Double_t> &phase,
const Double_t scale, const Double_t min, const Double_t max)
{
if ((re == 0) || (im == 0))
return 0;
phase.resize(2); // c0, c1
UInt_t noOfFourierBins = 0;
if (fNoOfBins % 2 == 0)
noOfFourierBins = fNoOfBins/2;
else
noOfFourierBins = (fNoOfBins+1)/2;
TAxis *axis = re->GetXaxis();
UInt_t minBin = 0;
UInt_t maxBin = noOfFourierBins;
Int_t minBin = 1;
Int_t maxBin = axis->GetNbins();
Int_t noOfBins = axis->GetNbins();
Double_t res = axis->GetBinWidth(1);
// check if minimum frequency is given. If yes, get the proper minBin
if (min != -1.0) {
minBin = (UInt_t)(min/fResolution);
minBin = axis->FindFixBin(min);
if ((minBin == 0) || (minBin > maxBin)) {
minBin = 1;
cerr << "**WARNING** minimum frequency/field out of range. Will adopted it." << endl;
}
}
// check if maximum frequency is given. If yes, get the proper maxBin
if (max != -1.0) {
maxBin = (UInt_t)(max/fResolution);
if (maxBin >= noOfFourierBins) {
maxBin = noOfFourierBins;
maxBin = axis->FindFixBin(max);
if ((maxBin == 0) || (maxBin > axis->GetNbins())) {
maxBin = axis->GetNbins();
cerr << "**WARNING** maximum frequency/field out of range. Will adopted it." << endl;
}
}
// copy the real/imag Fourier from min to max
vector<Double_t> realF, imagF;
for (UInt_t i=minBin; i<=maxBin; i++) {
realF.push_back(fOut[i][0]);
imagF.push_back(fOut[i][1]);
for (Int_t i=minBin; i<=maxBin; i++) {
realF.push_back(re->GetBinContent(i));
imagF.push_back(im->GetBinContent(i));
}
// optimize real FT phase
fPhCorrectedReFT = new PFTPhaseCorrection(realF, imagF);
if (fPhCorrectedReFT == 0) {
fValid = false;
PFTPhaseCorrection *phCorrectedReFT = new PFTPhaseCorrection(realF, imagF);
if (phCorrectedReFT == 0) {
cerr << endl << "**SEVERE ERROR** couldn't invoke PFTPhaseCorrection object." << endl;
return 0;
}
fPhCorrectedReFT->Minimize();
if (!fPhCorrectedReFT->IsValid()) {
fValid = false;
cerr << endl << "**ERROR** could not fina a valid phase correction minimum." << endl;
phCorrectedReFT->Minimize();
if (!phCorrectedReFT->IsValid()) {
cerr << endl << "**ERROR** could not find a valid phase correction minimum." << endl;
return 0;
}
phase[0] = fPhCorrectedReFT->GetPhaseCorrectionParam(0);
phase[1] = fPhCorrectedReFT->GetPhaseCorrectionParam(1);
phase[0] = phCorrectedReFT->GetPhaseCorrectionParam(0);
phase[1] = phCorrectedReFT->GetPhaseCorrectionParam(1);
// clean up
if (fPhCorrectedReFT) {
delete fPhCorrectedReFT;
fPhCorrectedReFT = 0;
if (phCorrectedReFT) {
delete phCorrectedReFT;
phCorrectedReFT = 0;
}
realF.clear();
imagF.clear();
@ -559,21 +565,20 @@ TH1F* PFourier::GetPhaseOptRealFourier(vector<Double_t> &phase, const Double_t s
// invoke the real phase optimised histo to be filled. Caller is the owner!
Char_t name[256];
Char_t title[256];
snprintf(name, sizeof(name), "%s_Fourier_PhOptRe", fData->GetName());
snprintf(title, sizeof(title), "%s_Fourier_PhOptRe", fData->GetTitle());
snprintf(name, sizeof(name), "%s_Fourier_PhOptRe", re->GetName());
snprintf(title, sizeof(title), "%s_Fourier_PhOptRe", re->GetTitle());
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfFourierBins, -fResolution/2.0, (Double_t)(noOfFourierBins-1)*fResolution+fResolution/2.0);
TH1F *realPhaseOptFourier = new TH1F(name, title, noOfBins, -res/2.0, (Double_t)(noOfBins-1)*res+res/2.0);
if (realPhaseOptFourier == 0) {
fValid = false;
cerr << endl << "**SEVERE ERROR** couldn't allocate memory for the real part of the Fourier transform." << endl;
return 0;
}
// fill realFourier vector
Double_t ph;
for (UInt_t i=0; i<noOfFourierBins; i++) {
for (Int_t i=0; i<noOfBins; i++) {
ph = phase[0] + phase[1] * (Double_t)((Int_t)i-(Int_t)minBin) / (Double_t)(maxBin-minBin);
realPhaseOptFourier->SetBinContent(i+1, scale*(fOut[i][0]*cos(ph) - fOut[i][1]*sin(ph)));
realPhaseOptFourier->SetBinContent(i+1, scale*(re->GetBinContent(i+1)*cos(ph) - im->GetBinContent(i+1)*sin(ph)));
realPhaseOptFourier->SetBinError(i+1, 0.0);
}

View File

@ -341,6 +341,16 @@ void PFourierCanvas::HandleCmdKey(Int_t event, Int_t x, Int_t y, TObject *select
CleanupAverage();
PlotFourier();
}
} else if (x == 'c') {
Int_t state = fFourierPad->GetCrosshair();
if (state == 0) {
fMainCanvas->ToggleEventStatus();
fFourierPad->SetCrosshair(2);
} else {
fMainCanvas->ToggleEventStatus();
fFourierPad->SetCrosshair(0);
}
fMainCanvas->Update();
} else if (x == '+') { // increment phase (Fourier real/imag)
IncrementFourierPhase();
} else if (x == '-') { // decrement phase (Fourier real/imag)
@ -366,32 +376,62 @@ void PFourierCanvas::HandleMenuPopup(Int_t id)
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_REAL);
fCurrentPlotView = FOURIER_PLOT_REAL;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_IMAG) {
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_IMAG);
fCurrentPlotView = FOURIER_PLOT_IMAG;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_REAL_AND_IMAG) {
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_REAL_AND_IMAG);
fCurrentPlotView = P_MENU_ID_FOURIER_REAL_AND_IMAG;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PWR) {
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PWR);
fCurrentPlotView = FOURIER_PLOT_POWER;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE) {
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE);
fCurrentPlotView = FOURIER_PLOT_PHASE;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE_OPT_REAL) {
fPopupFourier->UnCheckEntries();
fPopupFourier->CheckEntry(P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE_OPT_REAL);
fCurrentPlotView = FOURIER_PLOT_PHASE_OPT_REAL;
PlotFourier();
if (!fAveragedView) {
PlotFourier();
} else {
HandleAverage();
PlotAverage();
}
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE_PLUS) {
IncrementFourierPhase();
} else if (id == P_MENU_ID_FOURIER+P_MENU_ID_FOURIER_PHASE_MINUS) {
@ -814,7 +854,10 @@ void PFourierCanvas::InitFourierDataSets()
fFourierHistos[i].dataFourierIm = fFourier[i]->GetImaginaryFourier();
fFourierHistos[i].dataFourierPwr = fFourier[i]->GetPowerFourier();
fFourierHistos[i].dataFourierPhase = fFourier[i]->GetPhaseFourier();
fFourierHistos[i].dataFourierPhaseOptReal = fFourier[i]->GetPhaseOptRealFourier(fFourierHistos[i].optPhase, 1.0, fInitialXRange[0], fInitialXRange[1]);
if (fCurrentPlotView == FOURIER_PLOT_PHASE_OPT_REAL) {
fFourierHistos[i].dataFourierPhaseOptReal = fFourier[i]->GetPhaseOptRealFourier(fFourierHistos[i].dataFourierRe,
fFourierHistos[i].dataFourierIm, fFourierHistos[i].optPhase, 1.0, fInitialXRange[0], fInitialXRange[1]);
}
}
// rescale histo to abs(maximum) == 1
@ -879,17 +922,19 @@ void PFourierCanvas::InitFourierDataSets()
}
}
// phase opt real
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
for (Int_t j=start; j<=end; j++) {
dval = fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j);
if (fabs(dval) > max)
max = dval;
if (fCurrentPlotView == FOURIER_PLOT_PHASE_OPT_REAL) {
// phase opt real
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
for (Int_t j=start; j<=end; j++) {
dval = fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j);
if (fabs(dval) > max)
max = dval;
}
}
}
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
for (Int_t j=1; j<fFourierHistos[i].dataFourierPhaseOptReal->GetNbinsX(); j++) {
fFourierHistos[i].dataFourierPhaseOptReal->SetBinContent(j, fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j)/fabs(max));
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
for (Int_t j=1; j<fFourierHistos[i].dataFourierPhaseOptReal->GetNbinsX(); j++) {
fFourierHistos[i].dataFourierPhaseOptReal->SetBinContent(j, fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j)/fabs(max));
}
}
}
@ -903,8 +948,10 @@ void PFourierCanvas::InitFourierDataSets()
fFourierHistos[i].dataFourierPwr->SetLineColor(fColorList[i]);
fFourierHistos[i].dataFourierPhase->SetMarkerColor(fColorList[i]);
fFourierHistos[i].dataFourierPhase->SetLineColor(fColorList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerColor(fColorList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetLineColor(fColorList[i]);
if (fCurrentPlotView == FOURIER_PLOT_PHASE_OPT_REAL) {
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerColor(fColorList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetLineColor(fColorList[i]);
}
}
// set the marker symbol and size
@ -917,8 +964,10 @@ void PFourierCanvas::InitFourierDataSets()
fFourierHistos[i].dataFourierPwr->SetMarkerSize(0.7);
fFourierHistos[i].dataFourierPhase->SetMarkerStyle(fMarkerList[i]);
fFourierHistos[i].dataFourierPhase->SetMarkerSize(0.7);
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerStyle(fMarkerList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerSize(0.7);
if (fCurrentPlotView == FOURIER_PLOT_PHASE_OPT_REAL) {
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerStyle(fMarkerList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerSize(0.7);
}
}
// initialize average histos
@ -1116,6 +1165,10 @@ void PFourierCanvas::HandleAverage()
TString name("");
Double_t dval=0.0;
Bool_t phaseOptRealPresent = false;
if (fFourierHistos[0].dataFourierPhaseOptReal != 0)
phaseOptRealPresent = true;
// check if ALL data shall be averaged
if (fAveragedView) {
fFourierAverage.resize(1);
@ -1141,10 +1194,12 @@ void PFourierCanvas::HandleAverage()
fFourierHistos[0].dataFourierPhase->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhase->GetXaxis()->GetXmax());
name = TString(fFourierHistos[0].dataFourierPhaseOptReal->GetTitle()) + "_avg";
fFourierAverage[0].dataFourierPhaseOptReal = new TH1F(name, name, fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmax());
if (phaseOptRealPresent) {
name = TString(fFourierHistos[0].dataFourierPhaseOptReal->GetTitle()) + "_avg";
fFourierAverage[0].dataFourierPhaseOptReal = new TH1F(name, name, fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmax());
}
// real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierRe->GetNbinsX(); j++) {
@ -1206,20 +1261,22 @@ void PFourierCanvas::HandleAverage()
fFourierAverage[0].dataFourierPhase->SetMarkerSize(0.8);
fFourierAverage[0].dataFourierPhase->SetMarkerStyle(22);
// phase optimised real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(); j++) {
dval = 0.0;
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
if (j < fFourierHistos[i].dataFourierPhaseOptReal->GetNbinsX())
dval += GetInterpolatedValue(fFourierHistos[i].dataFourierPhaseOptReal, fFourierHistos[0].dataFourierPhaseOptReal->GetBinCenter(j));
if (phaseOptRealPresent) {
// phase optimised real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(); j++) {
dval = 0.0;
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
if (j < fFourierHistos[i].dataFourierPhaseOptReal->GetNbinsX())
dval += GetInterpolatedValue(fFourierHistos[i].dataFourierPhaseOptReal, fFourierHistos[0].dataFourierPhaseOptReal->GetBinCenter(j));
}
fFourierAverage[0].dataFourierPhaseOptReal->SetBinContent(j, dval/fFourierHistos.size());
}
fFourierAverage[0].dataFourierPhaseOptReal->SetBinContent(j, dval/fFourierHistos.size());
// set marker color, line color, maker size, marker type
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerColor(kBlack);
fFourierAverage[0].dataFourierPhaseOptReal->SetLineColor(kBlack);
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerSize(0.8);
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerStyle(22);
}
// set marker color, line color, maker size, marker type
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerColor(kBlack);
fFourierAverage[0].dataFourierPhaseOptReal->SetLineColor(kBlack);
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerSize(0.8);
fFourierAverage[0].dataFourierPhaseOptReal->SetMarkerStyle(22);
}
// check if per data set shall be averaged
@ -1283,10 +1340,12 @@ void PFourierCanvas::HandleAverage()
fFourierHistos[0].dataFourierPhase->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhase->GetXaxis()->GetXmax());
name = TString(fFourierHistos[start].dataFourierPhaseOptReal->GetTitle()) + "_avg";
fFourierAverage[i].dataFourierPhaseOptReal = new TH1F(name, name, fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmax());
if (phaseOptRealPresent) {
name = TString(fFourierHistos[start].dataFourierPhaseOptReal->GetTitle()) + "_avg";
fFourierAverage[i].dataFourierPhaseOptReal = new TH1F(name, name, fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmin(),
fFourierHistos[0].dataFourierPhaseOptReal->GetXaxis()->GetXmax());
}
// real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierRe->GetNbinsX(); j++) {
@ -1348,24 +1407,61 @@ void PFourierCanvas::HandleAverage()
fFourierAverage[i].dataFourierPhase->SetMarkerSize(0.8);
fFourierAverage[i].dataFourierPhase->SetMarkerStyle(22); // closed up triangle
// phase optimised real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(); j++) {
dval = 0.0;
for (Int_t k=start; k<=end; k++) {
if (j < fFourierHistos[k].dataFourierPhaseOptReal->GetNbinsX())
dval += GetInterpolatedValue(fFourierHistos[k].dataFourierPhaseOptReal, fFourierHistos[0].dataFourierPhaseOptReal->GetBinCenter(j));
if (phaseOptRealPresent) {
// phase optimised real average
for (Int_t j=0; j<fFourierHistos[0].dataFourierPhaseOptReal->GetNbinsX(); j++) {
dval = 0.0;
for (Int_t k=start; k<=end; k++) {
if (j < fFourierHistos[k].dataFourierPhaseOptReal->GetNbinsX())
dval += GetInterpolatedValue(fFourierHistos[k].dataFourierPhaseOptReal, fFourierHistos[0].dataFourierPhaseOptReal->GetBinCenter(j));
}
fFourierAverage[i].dataFourierPhaseOptReal->SetBinContent(j, dval/(end-start+1));
}
fFourierAverage[i].dataFourierPhaseOptReal->SetBinContent(j, dval/(end-start+1));
// set marker color, line color, maker size, marker type
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerColor(fColorList[i]);
fFourierAverage[i].dataFourierPhaseOptReal->SetLineColor(fColorList[i]);
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerSize(0.8);
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerStyle(22); // closed up triangle
}
// set marker color, line color, maker size, marker type
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerColor(fColorList[i]);
fFourierAverage[i].dataFourierPhaseOptReal->SetLineColor(fColorList[i]);
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerSize(0.8);
fFourierAverage[i].dataFourierPhaseOptReal->SetMarkerStyle(22); // closed up triangle
}
}
}
//--------------------------------------------------------------------------
// CalcPhaseOptReal (private)
//--------------------------------------------------------------------------
/**
* <p>calculate the phase opt. real FT
*/
void PFourierCanvas::CalcPhaseOptReal()
{
Int_t start = fFourierHistos[0].dataFourierRe->FindFixBin(fInitialXRange[0]);
Int_t end = fFourierHistos[0].dataFourierRe->FindFixBin(fInitialXRange[1]);
Double_t dval=0.0, max=0.0;
for (UInt_t i=0; i<fFourierHistos.size(); i++) {
fFourierHistos[i].dataFourierPhaseOptReal = fFourier[i]->GetPhaseOptRealFourier(fFourierHistos[i].dataFourierRe,
fFourierHistos[i].dataFourierIm, fFourierHistos[i].optPhase, 1.0, fInitialXRange[0], fInitialXRange[1]);
// normalize it
max = 0.0;
for (Int_t j=start; j<=end; j++) {
dval = fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j);
if (fabs(dval) > max)
max = dval;
}
for (Int_t j=1; j<fFourierHistos[i].dataFourierPhaseOptReal->GetNbinsX(); j++) {
fFourierHistos[i].dataFourierPhaseOptReal->SetBinContent(j, fFourierHistos[i].dataFourierPhaseOptReal->GetBinContent(j)/fabs(max));
}
// set the marker and line color
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerColor(fColorList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetLineColor(fColorList[i]);
// set the marker symbol and size
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerStyle(fMarkerList[i]);
fFourierHistos[i].dataFourierPhaseOptReal->SetMarkerSize(0.7);
}
}
//--------------------------------------------------------------------------
// PlotFourier (private)
//--------------------------------------------------------------------------
@ -1374,6 +1470,14 @@ void PFourierCanvas::HandleAverage()
*/
void PFourierCanvas::PlotFourier()
{
// check if phase opt real Fourier spectra already exists if requested,
// and if not calculate them first
if (fCurrentPlotView == FOURIER_PLOT_PHASE_OPT_REAL) {
if (fFourierHistos[0].dataFourierPhaseOptReal == 0) { // not yet calculated
CalcPhaseOptReal();
}
}
fFourierPad->cd();
Double_t xmin=0, xmax=0;
@ -1669,6 +1773,11 @@ void PFourierCanvas::PlotAverage()
fFourierAverage[0].dataFourierPhase->Draw("p");
break;
case FOURIER_PLOT_PHASE_OPT_REAL:
if (fFourierHistos[0].dataFourierPhaseOptReal == 0) {
cout << "debug> need to calculate phase opt. average first ..." << endl;
CalcPhaseOptReal();
HandleAverage();
}
fFourierAverage[0].dataFourierPhaseOptReal->GetXaxis()->SetRangeUser(xmin, xmax);
ymin = GetMinimum(fFourierAverage[0].dataFourierPhaseOptReal, xmin, xmax);
ymax = GetMaximum(fFourierAverage[0].dataFourierPhaseOptReal, xmin, xmax);

View File

@ -182,11 +182,14 @@ PMusrCanvas::PMusrCanvas()
* \param wh height (in pixels) of the canvas.
* \param batch flag: if set true, the canvas will not be displayed. This is used when just dumping of a
* graphical output file is wished.
* \param fourier flag: if set true, the canvas will present the Fourier view.
* \param avg flag: if set true, the canvas will present the averages data/Fourier view.
*/
PMusrCanvas::PMusrCanvas(const Int_t number, const Char_t* title,
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh,
const Bool_t batch, const Bool_t fourier) :
fStartWithFourier(fourier), fBatchMode(batch), fPlotNumber(number)
const Bool_t batch, const Bool_t fourier, const Bool_t avg) :
fStartWithFourier(fourier), fStartWithAvg(avg),
fBatchMode(batch), fPlotNumber(number)
{
fTimeout = 0;
fTimeoutTimer = 0;
@ -235,15 +238,17 @@ PMusrCanvas::PMusrCanvas(const Int_t number, const Char_t* title,
* \param colorList pre-defined list of colors
* \param batch flag: if set true, the canvas will not be displayed. This is used when just dumping of a
* graphical output file is wished.
* \param fourier flag: if set true, the canvas will present the Fourier view.
* \param avg flag: if set true, the canvas will present the averages data/Fourier view.
*/
PMusrCanvas::PMusrCanvas(const Int_t number, const Char_t* title,
Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh,
PMsrFourierStructure fourierDefault,
const PIntVector markerList, const PIntVector colorList,
const Bool_t batch, const Bool_t fourier) :
fStartWithFourier(fourier), fBatchMode(batch),
fPlotNumber(number), fFourier(fourierDefault),
fMarkerList(markerList), fColorList(colorList)
const Bool_t batch, const Bool_t fourier, const Bool_t avg) :
fStartWithFourier(fourier), fStartWithAvg(avg), fBatchMode(batch),
fPlotNumber(number), fFourier(fourierDefault),
fMarkerList(markerList), fColorList(colorList)
{
fTimeout = 0;
fTimeoutTimer = 0;
@ -832,6 +837,12 @@ void PMusrCanvas::UpdateDataTheoryPad()
HandleFourier();
PlotFourier();
}
// if fStartWithAvg=true, start with averaged data/Fourier representation
// fStartWithAvg is given at the command line level
if (fStartWithAvg) {
HandleCmdKey(kKeyPress, (Int_t)'a', 0, 0);
}
}
//--------------------------------------------------------------------------
@ -1357,6 +1368,13 @@ void PMusrCanvas::HandleMenuPopup(Int_t id)
// set appropriate plot view
fPreviousPlotView = fCurrentPlotView;
fCurrentPlotView = PV_FOURIER_PHASE_OPT_REAL;
// make sure that phase opt. real indeed exists
if (fData[0].dataFourierPhaseOptReal == 0) {
if (fData[0].dataFourierRe == 0)
HandleFourier();
else
CalcPhaseOptReFT();
}
// uncheck data
fPopupMain->UnCheckEntry(P_MENU_ID_DATA+P_MENU_PLOT_OFFSET*fPlotNumber);
// check appropriate fourier popup item
@ -3331,10 +3349,7 @@ void PMusrCanvas::HandleDifference()
*/
void PMusrCanvas::HandleFourier()
{
PDoubleVector phaseParam;
Double_t min=-1.0, max=-1.0;
Double_t re, im, ph;
char hName[1024];
Double_t re, im;
// check if plot type is appropriate for fourier
if (fPlotType == MSR_PLOT_NON_MUSR)
@ -3347,9 +3362,9 @@ void PMusrCanvas::HandleFourier()
double endTime = fXmax;
if (!fStartWithFourier) { // fHistoFrame present, hence get start/end from it
bin = fHistoFrame->GetXaxis()->GetFirst();
startTime = fHistoFrame->GetBinCenter(bin);
startTime = fHistoFrame->GetBinLowEdge(bin);
bin = fHistoFrame->GetXaxis()->GetLast();
endTime = fHistoFrame->GetBinCenter(bin);
endTime = fHistoFrame->GetBinLowEdge(bin)+fHistoFrame->GetBinWidth(bin);
}
for (UInt_t i=0; i<fData.size(); i++) {
// calculate fourier transform of the data
@ -3370,12 +3385,6 @@ void PMusrCanvas::HandleFourier()
// get phase part of the data
fData[i].dataFourierPhase = fourierData.GetPhaseFourier();
// get phase optimized real fourier from data
min = fMsrHandler->GetMsrFourierList()->fRangeForPhaseCorrection[0];
max = fMsrHandler->GetMsrFourierList()->fRangeForPhaseCorrection[1];
// eventually min/max needs to be extracted from the 'range_for_phase_correction' parameter of the msr-file
fData[i].dataFourierPhaseOptReal = fourierData.GetPhaseOptRealFourier(phaseParam, scale, min, max);
// set marker and line color
fData[i].dataFourierRe->SetMarkerColor(fData[i].data->GetMarkerColor());
fData[i].dataFourierRe->SetLineColor(fData[i].data->GetLineColor());
@ -3385,22 +3394,18 @@ void PMusrCanvas::HandleFourier()
fData[i].dataFourierPwr->SetLineColor(fData[i].data->GetLineColor());
fData[i].dataFourierPhase->SetMarkerColor(fData[i].data->GetMarkerColor());
fData[i].dataFourierPhase->SetLineColor(fData[i].data->GetLineColor());
fData[i].dataFourierPhaseOptReal->SetMarkerColor(fData[i].data->GetMarkerColor());
fData[i].dataFourierPhaseOptReal->SetLineColor(fData[i].data->GetLineColor());
// set marker size
fData[i].dataFourierRe->SetMarkerSize(1);
fData[i].dataFourierIm->SetMarkerSize(1);
fData[i].dataFourierPwr->SetMarkerSize(1);
fData[i].dataFourierPhase->SetMarkerSize(1);
fData[i].dataFourierPhaseOptReal->SetMarkerSize(1);
// set marker type
fData[i].dataFourierRe->SetMarkerStyle(fData[i].data->GetMarkerStyle());
fData[i].dataFourierIm->SetMarkerStyle(fData[i].data->GetMarkerStyle());
fData[i].dataFourierPwr->SetMarkerStyle(fData[i].data->GetMarkerStyle());
fData[i].dataFourierPhase->SetMarkerStyle(fData[i].data->GetMarkerStyle());
fData[i].dataFourierPhaseOptReal->SetMarkerStyle(fData[i].data->GetMarkerStyle());
// calculate fourier transform of the theory
Int_t powerPad = (Int_t)round(log((endTime-startTime)/fData[i].theory->GetBinWidth(1))/log(2))+3;
@ -3418,31 +3423,18 @@ void PMusrCanvas::HandleFourier()
// get power part of the data
fData[i].theoryFourierPwr = fourierTheory.GetPowerFourier(scale);
// get phase part of the data
fData[i].theoryFourierPhase = fourierTheory.GetPhaseFourier();
// get phase optimized real fourier from data
// clone theory Re FT
strcpy(hName, fData[i].theoryFourierPhase->GetName());
strcat(hName, "_Opt_Real");
fData[i].theoryFourierPhaseOptReal = (TH1F*) fData[i].theoryFourierRe->Clone(hName);
// rotate the theory according to the optimized phase parameters
// first find minBin for min of the phase correction
Int_t minBin = fData[i].theoryFourierPhaseOptReal->GetXaxis()->FindBin(min);
Int_t maxBin = fData[i].theoryFourierPhaseOptReal->GetXaxis()->FindBin(max);
for (Int_t j=1; j<fData[i].theoryFourierPhaseOptReal->GetNbinsX(); j++) {
ph = phaseParam[0] + phaseParam[1] * (Double_t)(j-minBin+1) / (Double_t)(maxBin-minBin);
re = fData[i].theoryFourierRe->GetBinContent(j) * cos(ph) - fData[i].theoryFourierIm->GetBinContent(j) * sin(ph);
fData[i].theoryFourierPhaseOptReal->SetBinContent(j, re);
}
fData[i].theoryFourierPhase = fourierTheory.GetPhaseFourier();
// set line colors for the theory
fData[i].theoryFourierRe->SetLineColor(fData[i].theory->GetLineColor());
fData[i].theoryFourierIm->SetLineColor(fData[i].theory->GetLineColor());
fData[i].theoryFourierPwr->SetLineColor(fData[i].theory->GetLineColor());
fData[i].theoryFourierPhase->SetLineColor(fData[i].theory->GetLineColor());
fData[i].theoryFourierPhaseOptReal->SetLineColor(fData[i].theory->GetLineColor());
}
// phase opt. real FT requested initially in the msr-file, hence calculate it here
if (fCurrentPlotView == PV_FOURIER_PHASE_OPT_REAL) {
CalcPhaseOptReFT();
}
// apply global phase if present
@ -3475,42 +3467,6 @@ void PMusrCanvas::HandleFourier()
}
}
}
/* as: will be obsolate ...
// find optimal Fourier phase if range is given
if ((fFourier.fRangeForPhaseCorrection[0] != -1.0) && (fFourier.fRangeForPhaseCorrection[1] != -1.0)) {
fCurrentFourierPhase = FindOptimalFourierPhase();
// apply optimal Fourier phase
double re, im;
const double cp = TMath::Cos(fCurrentFourierPhase/180.0*TMath::Pi());
const double sp = TMath::Sin(fCurrentFourierPhase/180.0*TMath::Pi());
for (UInt_t i=0; i<fData.size(); i++) { // loop over all data sets
if ((fData[i].dataFourierRe != 0) && (fData[i].dataFourierIm != 0)) {
for (Int_t j=0; j<fData[i].dataFourierRe->GetNbinsX(); j++) { // loop over a fourier data set
// calculate new fourier data set value
re = fData[i].dataFourierRe->GetBinContent(j) * cp + fData[i].dataFourierIm->GetBinContent(j) * sp;
im = fData[i].dataFourierIm->GetBinContent(j) * cp - fData[i].dataFourierRe->GetBinContent(j) * sp;
// overwrite fourier data set value
fData[i].dataFourierRe->SetBinContent(j, re);
fData[i].dataFourierIm->SetBinContent(j, im);
}
}
if ((fData[i].theoryFourierRe != 0) && (fData[i].theoryFourierIm != 0)) {
for (Int_t j=0; j<fData[i].theoryFourierRe->GetNbinsX(); j++) { // loop over a fourier data set
// calculate new fourier data set value
re = fData[i].theoryFourierRe->GetBinContent(j) * cp + fData[i].theoryFourierIm->GetBinContent(j) * sp;
im = fData[i].theoryFourierIm->GetBinContent(j) * cp - fData[i].theoryFourierRe->GetBinContent(j) * sp;
// overwrite fourier data set value
fData[i].theoryFourierRe->SetBinContent(j, re);
fData[i].theoryFourierIm->SetBinContent(j, im);
}
}
}
}
*/
}
}
@ -4190,6 +4146,10 @@ void PMusrCanvas::CleanupFourierDifference()
delete fData[i].diffFourierPhase;
fData[i].diffFourierPhase = 0;
}
if (fData[i].diffFourierPhaseOptReal != 0) {
delete fData[i].diffFourierPhaseOptReal;
fData[i].diffFourierPhaseOptReal = 0;
}
}
}
@ -4275,6 +4235,64 @@ void PMusrCanvas::CleanupAverage()
}
}
//--------------------------------------------------------------------------
// CalculateDiff (private)
//--------------------------------------------------------------------------
/**
* @brief PMusrCanvas::CalcPhaseOptReFT
*/
void PMusrCanvas::CalcPhaseOptReFT()
{
Double_t min = fMsrHandler->GetMsrFourierList()->fRangeForPhaseCorrection[0];
Double_t max = fMsrHandler->GetMsrFourierList()->fRangeForPhaseCorrection[1];
if ((min == -1.0) && (max == -1.0)) {
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
min = fFourier.fPlotRange[0];
max = fFourier.fPlotRange[1];
} else {
min = fData[0].dataFourierRe->GetBinLowEdge(1);
max = fData[0].dataFourierRe->GetBinLowEdge(fData[0].dataFourierRe->GetNbinsX())+fData[0].dataFourierRe->GetBinWidth(1);
}
}
PDoubleVector phaseParam;
Char_t hName[1024];
Double_t ph, re;
for (UInt_t i=0; i<fData.size(); i++) {
// handle Fourier data part
fData[i].dataFourierPhaseOptReal = PFourier::GetPhaseOptRealFourier(fData[i].dataFourierRe, fData[i].dataFourierIm,
phaseParam, 1.0, min, max);
// set marker and line color
fData[i].dataFourierPhaseOptReal->SetMarkerColor(fData[i].data->GetMarkerColor());
fData[i].dataFourierPhaseOptReal->SetLineColor(fData[i].data->GetLineColor());
// set marker size
fData[i].dataFourierPhaseOptReal->SetMarkerSize(1);
// set marker type
fData[i].dataFourierPhaseOptReal->SetMarkerStyle(fData[i].data->GetMarkerStyle());
// handle Fourier theory part
// clone theory Re FT
strcpy(hName, fData[i].theoryFourierPhase->GetName());
strcat(hName, "_Opt_Real");
fData[i].theoryFourierPhaseOptReal = (TH1F*) fData[i].theoryFourierRe->Clone(hName);
// rotate the theory according to the optimized phase parameters
// first find minBin for min of the phase correction
Int_t minBin = fData[i].theoryFourierPhaseOptReal->GetXaxis()->FindFixBin(min);
Int_t maxBin = fData[i].theoryFourierPhaseOptReal->GetXaxis()->FindFixBin(max);
for (Int_t j=1; j<fData[i].theoryFourierPhaseOptReal->GetNbinsX(); j++) {
ph = phaseParam[0] + phaseParam[1] * (Double_t)(j-minBin+1) / (Double_t)(maxBin-minBin);
re = fData[i].theoryFourierRe->GetBinContent(j) * cos(ph) - fData[i].theoryFourierIm->GetBinContent(j) * sin(ph);
fData[i].theoryFourierPhaseOptReal->SetBinContent(j, re);
}
// set line colors for the theory
fData[i].theoryFourierPhaseOptReal->SetLineColor(fData[i].theory->GetLineColor());
}
}
//--------------------------------------------------------------------------
// CalculateDiff (private)
//--------------------------------------------------------------------------
@ -5924,6 +5942,58 @@ void PMusrCanvas::PlotFourierDifference(Bool_t unzoom)
PlotFourierPhaseValue();
break;
case PV_FOURIER_PHASE_OPT_REAL:
// set x-range
if ((fFourier.fPlotRange[0] != -1) && (fFourier.fPlotRange[1] != -1)) {
xmin = fFourier.fPlotRange[0];
xmax = fFourier.fPlotRange[1];
} else {
xmin = fData[0].diffFourierPhaseOptReal->GetBinLowEdge(1);
xmax = fData[0].diffFourierPhaseOptReal->GetBinLowEdge(fData[0].diffFourierPhaseOptReal->GetNbinsX())+fData[0].diffFourierPhaseOptReal->GetBinWidth(1);
}
// set y-range
// first find minimum/maximum of all histos
ymin = GetMinimum(fData[0].diffFourierPhaseOptReal);
ymax = GetMaximum(fData[0].diffFourierPhaseOptReal);
for (UInt_t i=1; i<fData.size(); i++) {
binContent = GetMinimum(fData[i].diffFourierPhaseOptReal);
if (binContent < ymin)
ymin = binContent;
binContent = GetMaximum(fData[i].diffFourierPhaseOptReal);
if (binContent > ymax)
ymax = binContent;
}
// delete old fHistoFrame if present
if (fHistoFrame) {
delete fHistoFrame;
fHistoFrame = 0;
}
fHistoFrame = fDataTheoryPad->DrawFrame(xmin, 1.05*ymin, xmax, 1.05*ymax);
// set ranges for phase opt. real Fourier difference
for (UInt_t i=0; i<fData.size(); i++) {
fData[i].diffFourierPhaseOptReal->GetXaxis()->SetRangeUser(xmin, xmax);
fData[i].diffFourierPhaseOptReal->GetYaxis()->SetRangeUser(1.05*ymin, 1.05*ymax);
}
// set x-axis title
fHistoFrame->GetXaxis()->SetTitle(xAxisTitle.Data());
// set y-axis title
fHistoFrame->GetYaxis()->SetTitleOffset(1.3);
if (fData[0].diffFourierTag == 1)
fHistoFrame->GetYaxis()->SetTitle("Real Fourier (d-f: data-theory)");
else
fHistoFrame->GetYaxis()->SetTitle("Real Fourier (f-d: [(F data)-(F theory)]");
// plot data
for (UInt_t i=0; i<fData.size(); i++) {
fData[i].diffFourierPhaseOptReal->Draw("plsame");
}
break;
default:
break;

View File

@ -108,11 +108,14 @@ class PFourier
virtual Double_t GetResolution() { return fResolution; }
virtual Double_t GetMaxFreq();
virtual TH1F* GetRealFourier(const Double_t scale = 1.0);
virtual TH1F* GetPhaseOptRealFourier(vector<Double_t> &phase, const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0);
//as virtual TH1F* GetPhaseOptRealFourier(vector<Double_t> &phase, const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0);
virtual TH1F* GetImaginaryFourier(const Double_t scale = 1.0);
virtual TH1F* GetPowerFourier(const Double_t scale = 1.0);
virtual TH1F* GetPhaseFourier(const Double_t scale = 1.0);
static TH1F* GetPhaseOptRealFourier(const TH1F *re, const TH1F *im, vector<Double_t> &phase,
const Double_t scale = 1.0, const Double_t min = -1.0, const Double_t max = -1.0);
virtual Bool_t IsValid() { return fValid; }
private:
@ -136,7 +139,7 @@ class PFourier
fftw_complex *fIn; ///< real part of the Fourier transform
fftw_complex *fOut; ///< imaginary part of the Fourier transform
PFTPhaseCorrection *fPhCorrectedReFT;
//as PFTPhaseCorrection *fPhCorrectedReFT;
virtual void PrepareFFTwInputData(UInt_t apodizationTag);
virtual void ApodizeData(Int_t apodizationTag);

View File

@ -159,6 +159,7 @@ class PFourierCanvas : public TObject, public TQObject
virtual void InitFourierCanvas(const Char_t* title, Int_t wtopx, Int_t wtopy, Int_t ww, Int_t wh);
virtual void CleanupAverage();
virtual void HandleAverage();
virtual void CalcPhaseOptReal();
virtual void PlotFourier();
virtual void PlotFourierPhaseValue();

View File

@ -713,7 +713,7 @@ Int_t musrFT_dumpData(TString fln, vector<PFourier*> &fourierData, Double_t star
musrFT_cleanup(hRe);
for (UInt_t i=1; i<fourierData.size(); i++) {
hRe = fourierData[i]->GetRealFourier();
if (hRe->GetNbinsX()-1 < minSize)
if (hRe->GetNbinsX()-1 < (Int_t)minSize)
minSize = hRe->GetNbinsX()-1;
musrFT_cleanup(hRe);
}
@ -721,7 +721,7 @@ Int_t musrFT_dumpData(TString fln, vector<PFourier*> &fourierData, Double_t star
for (UInt_t i=0; i<fourierData.size(); i++) {
hRe = fourierData[i]->GetRealFourier();
hIm = fourierData[i]->GetImaginaryFourier();
for (Int_t j=1; j<minSize; j++) {
for (Int_t j=1; j<(Int_t)minSize; j++) {
dval = hRe->GetBinCenter(j);
if ((dval >= start) && (dval <= end)) {
freq.push_back(dval);
@ -1020,7 +1020,6 @@ Int_t main(Int_t argc, Char_t *argv[])
PStartupOptions startup_options;
startup_options.writeExpectedChisq = false;
startup_options.estimateN0 = true;
startup_options.alphaEstimateN0 = 0.0;
TSAXParser *saxParser = new TSAXParser();
PStartupHandler *startupHandler = new PStartupHandler();
if (!startupHandler->StartupFileFound()) {
@ -1057,7 +1056,6 @@ Int_t main(Int_t argc, Char_t *argv[])
}
}
}
startupHandler->SetStartupOptions(startup_options);
// defines the raw time-domain data vector
PPrepFourier data(startupParam.packing, startupParam.bkg_range, startupParam.bkg);
@ -1066,7 +1064,7 @@ Int_t main(Int_t argc, Char_t *argv[])
vector<PMsrHandler*> msrHandler;
msrHandler.resize(startupParam.msrFln.size());
for (UInt_t i=0; i<startupParam.msrFln.size(); i++) {
msrHandler[i] = new PMsrHandler(startupParam.msrFln[i].Data(), startupHandler->GetStartupOptions(), true);
msrHandler[i] = new PMsrHandler(startupParam.msrFln[i].Data(), &startup_options, true);
status = msrHandler[i]->ReadMsrFile();
if (status != PMUSR_SUCCESS) {
switch (status) {

View File

@ -63,6 +63,7 @@ void musrview_syntax()
cout << endl << " --help : display this help and exit.";
cout << endl << " --version : output version information and exit.";
cout << endl << " -f, --fourier: will directly present the Fourier transform of the <msr-file>.";
cout << endl << " -a, --avg: will directly present the averaged data/Fourier of the <msr-file>.";
cout << endl << " --<graphic-format-extension>: ";
cout << endl << " will produce a graphics-output-file without starting a root session.";
cout << endl << " the name is based on the <msr-file>, e.g. 3310.msr -> 3310_0.png";
@ -102,6 +103,7 @@ int main(int argc, char *argv[])
bool success = true;
char fileName[128];
bool fourier = false;
bool avg = false;
bool graphicsOutput = false;
bool asciiOutput = false;
char graphicsExtension[128];
@ -135,6 +137,8 @@ int main(int argc, char *argv[])
break;
} else if (!strcmp(argv[i], "-f") || !strcmp(argv[i], "--fourier")) {
fourier = true;
} else if (!strcmp(argv[i], "-a") || !strcmp(argv[i], "--avg")) {
avg = true;
} else if (!strcmp(argv[i], "--eps") || !strcmp(argv[i], "--pdf") || !strcmp(argv[i], "--gif") ||
!strcmp(argv[i], "--jpg") || !strcmp(argv[i], "--png") || !strcmp(argv[i], "--svg") ||
!strcmp(argv[i], "--xpm") || !strcmp(argv[i], "--root")) {
@ -308,12 +312,12 @@ int main(int argc, char *argv[])
startupHandler->GetMarkerList(),
startupHandler->GetColorList(),
graphicsOutput||asciiOutput,
fourier);
fourier, avg);
else
musrCanvas = new PMusrCanvas(i, msrHandler->GetMsrTitle()->Data(),
10+i*100, 10+i*100, 800, 600,
graphicsOutput||asciiOutput,
fourier);
fourier, avg);
if (!musrCanvas->IsValid()) {
cerr << endl << ">> musrview **SEVERE ERROR** Couldn't invoke all necessary objects, will quit.";