Added two precessing and one non-precessing Mu state.

This commit is contained in:
nemu
2010-03-01 17:43:29 +00:00
parent 07e6863939
commit 5d2b7e71d5
3 changed files with 128 additions and 111 deletions

View File

@ -54,17 +54,20 @@ PSimulateMuTransition::PSimulateMuTransition(UInt_t seed)
fValid = false;
}
fNmuons = 100; // number of muons to simulate
fMuCoupling = 4463.; // vacuum Mu hyperfine coupling constant
fBfield = 0.01; // magnetic field (T)
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
fInitialPhase = 0.;
fMuonPhase = fInitialPhase;
fMuonDecayTime = 0.;
fAsymmetry = 0.27;
fMuFraction = 0.;
fDebugFlag = kFALSE;
fNmuons = 100; // number of muons to simulate
fMuPrecFreq1 = 4463.; // vacuum Mu hyperfine coupling constant
fMuPrecFreq2 = 0.; // Mu precession frequency of a 2nd Mu transition
fBfield = 0.01; // magnetic field (T)
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
fInitialPhase = 0.;
fMuonPhase = fInitialPhase;
fMuonDecayTime = 0.;
fAsymmetry = 0.27;
fMuFraction = 0.;
fMuFractionState1 = 0.;
fMuFractionState2 = 0.;
fDebugFlag = kFALSE;
}
//--------------------------------------------------------------------------
@ -89,12 +92,15 @@ PSimulateMuTransition::~PSimulateMuTransition()
*/
void PSimulateMuTransition::PrintSettings() const
{
cout << endl << "Mu hyperfine couling (MHz) = " << fMuCoupling;
cout << endl << "Mu precession frequency state1 (MHz) = " << fMuPrecFreq1;
cout << endl << "Mu precession frequency state2 (MHz) = " << fMuPrecFreq2;
cout << endl << "B field (T) = " << fBfield;
cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate;
cout << endl << "Mu ionizatioan rate (MHz) = " << fIonizationRate;
cout << endl << "Decay asymmetry = " << fAsymmetry;
cout << endl << "Muonium fraction = " << fMuFraction;
cout << endl << "Muonium fraction state1 = " << fMuFractionState1;
cout << endl << "Muonium fraction state2 = " << fMuFractionState2;
cout << endl << "Number of particles to simulate = " << fNmuons;
cout << endl << "Initial muon spin phase (degree) = " << fInitialPhase;
cout << endl << "Debug flag = " << fDebugFlag;
@ -134,9 +140,9 @@ void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward)
fMuonDecayTime = NextEventTime(fMuonDecayRate);
// initial muon state Mu+ or Mu0?
if (fRandom->Rndm() <= 1.-fMuFraction)
MuonEvent();
Event("Mu+");
else
MuoniumEvent();
Event("");
// fill 50% in "forward", and 50% in "backward" detector to get independent
// events in "forward" and "backward" histograms. This allows "normal" uSR
@ -184,99 +190,103 @@ Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const Doub
}
//--------------------------------------------------------------------------
// MuonEvent (private)
// Event (private)
//--------------------------------------------------------------------------
/**
* <p> Generates "one muon event": simulate muon phase under free precession at
* external field and Mu precession
* initial muon state: Mu+
*
* \param muonString if eq. "Mu+" begin with Mu+ precession
*/
void PSimulateMuTransition::MuonEvent()
void PSimulateMuTransition::Event(const TString muonString)
{
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
Double_t muonPrecessionFreq; // MHz
Double_t muonPrecessionFreq, muoniumPrecessionFreq; // MHz
Double_t rndm, frac1, frac2;
muonPrecessionFreq = fMuonGyroRatio * fBfield;
// charge-exchange loop until muon decay
eventTime = 0.;
eventDiffTime = 0.;
if (fDebugFlag) cout << "Muon Event, Decay time = " << fMuonDecayTime << endl;
while (1) {
// assume Mu+ as initial state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
// now, we have Mu0; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, fMuCoupling);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, fMuCoupling);
break;
}
}
if (fDebugFlag) cout << " Final Phase = " << fMuonPhase << endl;
//fMuonPhase = TMath::ACos(TMath::Cos(fMuonPhase))*360./TMath::TwoPi(); //transform back to [0, 180] degree interval
return;
}
//--------------------------------------------------------------------------
// MuoniumEvent (private)
//--------------------------------------------------------------------------
/**
* <p> Generates "one muonium event": simulate muon spin phase in Mu and as
* free muon in external field
* initial muon state: Mu0
*
*/
void PSimulateMuTransition::MuoniumEvent()
{
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
Double_t muonPrecessionFreq; // MHz
muonPrecessionFreq = fMuonGyroRatio * fBfield;
// charge-exchange loop until muon decay
eventTime = 0.;
eventDiffTime = 0.;
if (fDebugFlag) cout << "Muonium event, Decay time = " << fMuonDecayTime << endl;
while (1) {
// we have Mu0 as initial state; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, fMuCoupling);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, fMuCoupling);
break;
}
// now we have Mu+, get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
if (fDebugFlag) cout << "Decay time = " << fMuonDecayTime << endl;
//cout << muonString << endl;
while (1) {
if (muonString == "Mu+"){
// Mu+ initial state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
// now, we have Mu0; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
// determine Mu state
rndm = fRandom->Rndm();
frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
frac2 = 1. - fMuFractionState2;
if ( rndm < frac1 )
muoniumPrecessionFreq = 0.;
else if (rndm >= frac1 && rndm <= frac2)
muoniumPrecessionFreq = fMuPrecFreq1;
else
muoniumPrecessionFreq = fMuPrecFreq2;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Freq = " << muoniumPrecessionFreq
<< " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, muoniumPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muoniumPrecessionFreq);
break;
}
}
else{
// Mu0 as initial state; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
// determine Mu state
rndm = fRandom->Rndm();
frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
frac2 = 1. - fMuFractionState2;
if ( rndm < frac1 )
muoniumPrecessionFreq = 0.;
else if (rndm >= frac1 && rndm <= frac2)
muoniumPrecessionFreq = fMuPrecFreq1;
else
muoniumPrecessionFreq = fMuPrecFreq2;
if (fDebugFlag)
cout << "Mu Ioniza. time = " << ionizationTime << " Freq = " << muoniumPrecessionFreq
<< " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, muoniumPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muoniumPrecessionFreq);
break;
}
// Mu+ state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
}
}