Added two precessing and one non-precessing Mu state.

This commit is contained in:
nemu 2010-03-01 17:43:29 +00:00
parent 07e6863939
commit 5d2b7e71d5
3 changed files with 128 additions and 111 deletions

View File

@ -54,17 +54,20 @@ PSimulateMuTransition::PSimulateMuTransition(UInt_t seed)
fValid = false;
}
fNmuons = 100; // number of muons to simulate
fMuCoupling = 4463.; // vacuum Mu hyperfine coupling constant
fBfield = 0.01; // magnetic field (T)
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
fInitialPhase = 0.;
fMuonPhase = fInitialPhase;
fMuonDecayTime = 0.;
fAsymmetry = 0.27;
fMuFraction = 0.;
fDebugFlag = kFALSE;
fNmuons = 100; // number of muons to simulate
fMuPrecFreq1 = 4463.; // vacuum Mu hyperfine coupling constant
fMuPrecFreq2 = 0.; // Mu precession frequency of a 2nd Mu transition
fBfield = 0.01; // magnetic field (T)
fCaptureRate = 0.01; // Mu+ capture rate (MHz)
fIonizationRate = 10.; // Mu0 ionization rate (MHz)
fInitialPhase = 0.;
fMuonPhase = fInitialPhase;
fMuonDecayTime = 0.;
fAsymmetry = 0.27;
fMuFraction = 0.;
fMuFractionState1 = 0.;
fMuFractionState2 = 0.;
fDebugFlag = kFALSE;
}
//--------------------------------------------------------------------------
@ -89,12 +92,15 @@ PSimulateMuTransition::~PSimulateMuTransition()
*/
void PSimulateMuTransition::PrintSettings() const
{
cout << endl << "Mu hyperfine couling (MHz) = " << fMuCoupling;
cout << endl << "Mu precession frequency state1 (MHz) = " << fMuPrecFreq1;
cout << endl << "Mu precession frequency state2 (MHz) = " << fMuPrecFreq2;
cout << endl << "B field (T) = " << fBfield;
cout << endl << "Mu+ electron capture rate (MHz) = " << fCaptureRate;
cout << endl << "Mu ionizatioan rate (MHz) = " << fIonizationRate;
cout << endl << "Decay asymmetry = " << fAsymmetry;
cout << endl << "Muonium fraction = " << fMuFraction;
cout << endl << "Muonium fraction state1 = " << fMuFractionState1;
cout << endl << "Muonium fraction state2 = " << fMuFractionState2;
cout << endl << "Number of particles to simulate = " << fNmuons;
cout << endl << "Initial muon spin phase (degree) = " << fInitialPhase;
cout << endl << "Debug flag = " << fDebugFlag;
@ -134,9 +140,9 @@ void PSimulateMuTransition::Run(TH1F *histoForward, TH1F *histoBackward)
fMuonDecayTime = NextEventTime(fMuonDecayRate);
// initial muon state Mu+ or Mu0?
if (fRandom->Rndm() <= 1.-fMuFraction)
MuonEvent();
Event("Mu+");
else
MuoniumEvent();
Event("");
// fill 50% in "forward", and 50% in "backward" detector to get independent
// events in "forward" and "backward" histograms. This allows "normal" uSR
@ -184,99 +190,103 @@ Double_t PSimulateMuTransition::PrecessionPhase(const Double_t &time, const Doub
}
//--------------------------------------------------------------------------
// MuonEvent (private)
// Event (private)
//--------------------------------------------------------------------------
/**
* <p> Generates "one muon event": simulate muon phase under free precession at
* external field and Mu precession
* initial muon state: Mu+
*
* \param muonString if eq. "Mu+" begin with Mu+ precession
*/
void PSimulateMuTransition::MuonEvent()
void PSimulateMuTransition::Event(const TString muonString)
{
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
Double_t muonPrecessionFreq; // MHz
Double_t muonPrecessionFreq, muoniumPrecessionFreq; // MHz
Double_t rndm, frac1, frac2;
muonPrecessionFreq = fMuonGyroRatio * fBfield;
// charge-exchange loop until muon decay
eventTime = 0.;
eventDiffTime = 0.;
if (fDebugFlag) cout << "Muon Event, Decay time = " << fMuonDecayTime << endl;
while (1) {
// assume Mu+ as initial state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
// now, we have Mu0; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, fMuCoupling);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, fMuCoupling);
break;
}
}
if (fDebugFlag) cout << " Final Phase = " << fMuonPhase << endl;
//fMuonPhase = TMath::ACos(TMath::Cos(fMuonPhase))*360./TMath::TwoPi(); //transform back to [0, 180] degree interval
return;
}
//--------------------------------------------------------------------------
// MuoniumEvent (private)
//--------------------------------------------------------------------------
/**
* <p> Generates "one muonium event": simulate muon spin phase in Mu and as
* free muon in external field
* initial muon state: Mu0
*
*/
void PSimulateMuTransition::MuoniumEvent()
{
Double_t eventTime, eventDiffTime, captureTime, ionizationTime;
Double_t muonPrecessionFreq; // MHz
muonPrecessionFreq = fMuonGyroRatio * fBfield;
// charge-exchange loop until muon decay
eventTime = 0.;
eventDiffTime = 0.;
if (fDebugFlag) cout << "Muonium event, Decay time = " << fMuonDecayTime << endl;
while (1) {
// we have Mu0 as initial state; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, fMuCoupling);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, fMuCoupling);
break;
}
// now we have Mu+, get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
if (fDebugFlag) cout << "Decay time = " << fMuonDecayTime << endl;
//cout << muonString << endl;
while (1) {
if (muonString == "Mu+"){
// Mu+ initial state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
// now, we have Mu0; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
// determine Mu state
rndm = fRandom->Rndm();
frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
frac2 = 1. - fMuFractionState2;
if ( rndm < frac1 )
muoniumPrecessionFreq = 0.;
else if (rndm >= frac1 && rndm <= frac2)
muoniumPrecessionFreq = fMuPrecFreq1;
else
muoniumPrecessionFreq = fMuPrecFreq2;
if (fDebugFlag) cout << "Ioniza. time = " << ionizationTime << " Freq = " << muoniumPrecessionFreq
<< " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, muoniumPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muoniumPrecessionFreq);
break;
}
}
else{
// Mu0 as initial state; get next ionization time
ionizationTime = NextEventTime(fIonizationRate);
eventTime += ionizationTime;
// determine Mu state
rndm = fRandom->Rndm();
frac1 = 1. - fMuFractionState1 - fMuFractionState2; // non-precessing Mu states
frac2 = 1. - fMuFractionState2;
if ( rndm < frac1 )
muoniumPrecessionFreq = 0.;
else if (rndm >= frac1 && rndm <= frac2)
muoniumPrecessionFreq = fMuPrecFreq1;
else
muoniumPrecessionFreq = fMuPrecFreq2;
if (fDebugFlag)
cout << "Mu Ioniza. time = " << ionizationTime << " Freq = " << muoniumPrecessionFreq
<< " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(ionizationTime, muoniumPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - ionizationTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muoniumPrecessionFreq);
break;
}
// Mu+ state; get next electron capture time
captureTime = NextEventTime(fCaptureRate);
eventTime += captureTime;
if (fDebugFlag) cout << "Capture time = " << captureTime << " Phase = " << fMuonPhase << endl;
if (eventTime < fMuonDecayTime)
fMuonPhase += PrecessionPhase(captureTime, muonPrecessionFreq);
else{ //muon decays; handle precession prior to muon decay
eventDiffTime = fMuonDecayTime - (eventTime - captureTime);
fMuonPhase += PrecessionPhase(eventDiffTime, muonPrecessionFreq);
break;
}
}
}

View File

@ -46,20 +46,22 @@ class PSimulateMuTransition : public TObject
virtual ~PSimulateMuTransition();
virtual void PrintSettings() const;
virtual void SetNmuons(Int_t value) { fNmuons = value; } //!< number of muons
virtual void SetDebugFlag(Bool_t value) { fDebugFlag = value; } //!< debug flag
virtual void SetBfield(Double_t value) { fBfield = value; } //!< sets magnetic field (T)
virtual void SetMuCoupling(Double_t value) { fMuCoupling = value; } //!< sets Mu hyperfine coupling (MHz)
virtual void SetCaptureRate(Double_t value){ fCaptureRate = value; } //!< sets Mu+ electron capture rate (MHz)
virtual void SetNmuons(Int_t value) { fNmuons = value; } //!< number of muons
virtual void SetDebugFlag(Bool_t value) { fDebugFlag = value; } //!< debug flag
virtual void SetBfield(Double_t value) { fBfield = value; } //!< sets magnetic field (T)
virtual void SetMuPrecFreq1(Double_t value) { fMuPrecFreq1 = value; } //!< sets Mu hyperfine coupling (MHz)
virtual void SetMuPrecFreq2(Double_t value) { fMuPrecFreq2 = value; } //!< sets Mu hyperfine coupling (MHz)
virtual void SetCaptureRate(Double_t value){ fCaptureRate = value; } //!< sets Mu+ electron capture rate (MHz)
virtual void SetIonizationRate(Double_t value){ fIonizationRate = value; } //!< sets Mu0 ionization rate (MHz)
virtual void SetDecayAsymmetry(Double_t value){ fAsymmetry = value; } //!< muon decay asymmetry
virtual void SetMuFraction(Double_t value){ fMuFraction = value; } //!< Muonium fraction
virtual void SetMuFractionState1(Double_t value){ fMuFractionState1 = value; }
virtual void SetMuFractionState2(Double_t value){ fMuFractionState2 = value; }
virtual Bool_t IsValid() { return fValid; }
virtual void SetSeed(UInt_t seed);
virtual Double_t GetBfield() { return fBfield; } //!< returns the magnetic field (T)
virtual Double_t GetMuCoupling() { return fMuCoupling; } //!< returns the Mu hyperfine coupling (MHz)
virtual Double_t GetCaptureRate() { return fCaptureRate; } //!< returns Mu+ electron capture rate (MHz)
virtual Double_t GetIonizationRate() { return fIonizationRate; } //!< returns Mu0 ionization rate (MHz)
virtual void Run(TH1F *histoForward, TH1F *histoBackward);
@ -69,22 +71,24 @@ class PSimulateMuTransition : public TObject
TRandom2 *fRandom;
Double_t fBfield; //!< magnetic field (T)
Double_t fMuCoupling; //!< Mu hyperfine coupling constant (MHz)
Double_t fMuPrecFreq1; //!< Mu precession frequency of state 1 (MHz)
Double_t fMuPrecFreq2; //!< Mu precession frequency of state 2 (MHz)
Double_t fCaptureRate; //!< Mu+ electron capture rate (MHz)
Double_t fIonizationRate; //!< Mu0 ionization rate (MHz)
Double_t fInitialPhase; //!< initial muon spin phase
Double_t fMuonDecayTime; //!< muon decay time (us)
Double_t fMuonPhase; //!< phase of muon spin
Double_t fAsymmetry; //!< muon decay asymmetry
Double_t fMuFraction; //!< Mu fraction [0,1]
Double_t fMuFraction; //!< total Mu fraction [0,1]
Double_t fMuFractionState1; //!< fraction of Mu in state 1
Double_t fMuFractionState2; //!< fraction of Mu in state 2
Int_t fNmuons; //!< number of muons to simulate
Bool_t fDebugFlag; //!< debug flag
virtual Double_t NextEventTime(const Double_t &EventRate);
virtual Double_t PrecessionPhase(const Double_t &time, const Double_t &frequency);
virtual void MuonEvent();
virtual void MuoniumEvent();
virtual void Event(const TString muonString);
ClassDef(PSimulateMuTransition, 0)
};

View File

@ -32,7 +32,7 @@ void runMuSimulation()
{
// load library
gSystem->Load("$ROOTSYS/lib/libPSimulateMuTransition");
// generate data
TFolder *histosFolder;
TFolder *decayAnaModule;
@ -43,7 +43,7 @@ void runMuSimulation()
decayAnaModule = histosFolder->AddFolder("DecayAnaModule", "muSR decay histograms");
// feed run info header
UInt_t runNo = 9016;
UInt_t runNo = 9100;
TString tstr;
runInfo = gROOT->GetRootFolder()->AddFolder("RunInfo", "LEM RunInfo");
gROOT->GetListOfBrowsables()->Add(runInfo, "RunInfo");
@ -61,7 +61,7 @@ void runMuSimulation()
header->SetImpEnergy(31.8);
header->SetSampleTemperature(0.2, 0.001);
header->SetSampleBField(-1.0, 0.1);
header->SetTimeResolution(0.1953125);
header->SetTimeResolution(1.);
header->SetNChannels(12001);
header->SetNHist(2);
header->SetCuts("none");
@ -86,13 +86,16 @@ void runMuSimulation()
}
//prepare to run simulation
simulateMuTransition->SetMuCoupling(35.); // MHz
simulateMuTransition->SetMuPrecFreq1(51.); // MHz
simulateMuTransition->SetMuPrecFreq2(-27.); // MHz
simulateMuTransition->SetMuFraction(0.5); // initial Mu fraction
simulateMuTransition->SetMuFractionState1(1.0); // 100% of Mu in state 1
simulateMuTransition->SetMuFractionState2(0.0); // 0% of Mu in state 2
simulateMuTransition->SetBfield(0.1); // Tesla
simulateMuTransition->SetCaptureRate(1.0); // MHz
simulateMuTransition->SetIonizationRate(250.0); // MHz
simulateMuTransition->SetNmuons(1e6);
simulateMuTransition->SetCaptureRate(1.5); // MHz
simulateMuTransition->SetIonizationRate(250.); // MHz
simulateMuTransition->SetNmuons(1e7);
simulateMuTransition->SetDecayAsymmetry(0.27);
simulateMuTransition->SetMuFraction(0.5);
simulateMuTransition->SetDebugFlag(kFALSE); // to print time and phase during charge-changing cycle
simulateMuTransition->PrintSettings();