improve the doxygen docu of PUserFcn.* and PUserFcnBase.*
All checks were successful
Build and Deploy Documentation / build-and-deploy (push) Successful in 18s

This commit is contained in:
2025-11-23 17:58:07 +01:00
parent d8ae606a55
commit 0db498284f
4 changed files with 323 additions and 53 deletions

View File

@@ -35,7 +35,15 @@ ClassImp(PUserFcn)
//------------------------------------------------------
/**
* <p>Constructor
* \brief Default constructor for PUserFcn.
*
* Initializes a third-order polynomial user function. This implementation
* requires no special initialization as it has no internal state - all
* computation is done directly in the operator() method.
*
* \note This simple constructor serves as a template for more complex user
* functions. Functions requiring initialization (e.g., loading lookup tables,
* precomputing constants) should perform that work here or in SetGlobalPart().
*/
PUserFcn::PUserFcn()
{
@@ -43,7 +51,16 @@ PUserFcn::PUserFcn()
//------------------------------------------------------
/**
* <p>Destructor
* \brief Destructor for PUserFcn.
*
* Cleans up any resources allocated by the polynomial function. Since this
* implementation has no dynamically allocated resources, the destructor is
* empty.
*
* \note User functions with allocated resources (lookup tables, buffers,
* external library handles) must clean them up here to prevent memory leaks.
* If using the global part interface, ensure proper coordination with
* gGlobalUserFcn cleanup.
*/
PUserFcn::~PUserFcn()
{
@@ -51,16 +68,48 @@ PUserFcn::~PUserFcn()
//------------------------------------------------------
/**
* <p> user function example: polynome of 3rd order
* \brief Evaluates the third-order polynomial at the given time.
*
* \f[ = \sum_{k=0}^3 c_k t^k \f]
* Computes a cubic polynomial of the form:
*
* <b>meaning of paramValues:</b> \f$c_0\f$, \f$c_1\f$, \f$c_2\f$, \f$c_3\f$
* \f[ P(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3 = \sum_{k=0}^{3} c_k t^k \f]
*
* <b>return:</b> function value
* where the coefficients \f$c_k\f$ are provided in the parameter vector.
*
* \param t time in \f$(\mu\mathrm{s})\f$, or x-axis value for non-muSR fit
* \param param parameter vector
* \section puserfcn_op_example Example MSR Configuration
*
* \code
* FITPARAMETER
* # No Name Value Step Pos_Error Boundaries
* 1 c0 0.95 0.01 none
* 2 c1 -0.001 0.0001 none
* 3 c2 0.00001 0.000001 none
* 4 c3 0.0 0.0000001 none 0 none (fixed to zero for quadratic)
*
* THEORY
* userFcn libPUserFcn.so PUserFcn 1 2 3 4
* \endcode
*
* \section puserfcn_op_notes Implementation Notes
*
* - Uses direct polynomial evaluation (Horner's method could improve
* numerical stability for high-precision applications)
* - Asserts exactly 4 parameters to catch MSR file configuration errors
* - No special handling for negative time values
*
* \param t Independent variable (time in μs for μSR, or general x-axis
* value for non-μSR fits)
* \param param Vector containing exactly 4 polynomial coefficients:
* - param[0]: \f$c_0\f$ - constant term (dimensionless)
* - param[1]: \f$c_1\f$ - linear coefficient (μs⁻¹)
* - param[2]: \f$c_2\f$ - quadratic coefficient (μs⁻²)
* - param[3]: \f$c_3\f$ - cubic coefficient (μs⁻³)
*
* \return The polynomial value \f$P(t)\f$ at the specified time
*
* \pre param.size() == 4 (enforced by assertion)
*
* \see PUserFcnBase::operator() for the virtual interface specification
*/
Double_t PUserFcn::operator()(Double_t t, const std::vector<Double_t> &param) const
{

View File

@@ -34,21 +34,58 @@
ClassImp(PUserFcnBase)
//--------------------------------------------------------------------------
// This function is a replacement for the ParseFile method of TSAXParser.
// It is needed because in certain environments ParseFile does not work but ParseBuffer does.
//--------------------------------------------------------------------------
/**
* <p> Replacement for the ParseFile method of TSAXParser
* that can be used in user functions.
* \brief Parses an XML file using buffer-based parsing for better compatibility.
*
* <p><b>return:</b>
* - 1 if file cannot be read
* - 0 if the file has been parsed successfully
* - parse error code otherwise
* This function provides a replacement for TSAXParser::ParseFile() that works
* reliably across different environments. Some systems have issues with direct
* file parsing, but buffer-based parsing (ParseBuffer) works consistently.
*
* \param saxParser pointer to a TSAXParser object
* \param startup_path_name full path to the XML file to be read
* \section parsexml_usage Usage in User Functions
*
* User functions that need to read XML configuration files should use this
* function instead of TSAXParser::ParseFile():
*
* \code{.cpp}
* class TMyConfigurableFcn : public PUserFcnBase {
* private:
* MyConfigHandler fHandler; // Derived from TSAXParser callbacks
*
* public:
* Bool_t LoadConfig(const char* configFile) {
* TSAXParser parser;
* parser.ConnectToHandler("MyConfigHandler", &fHandler);
*
* Int_t status = parseXmlFile(&parser, configFile);
* if (status != 0) {
* std::cerr << "Failed to parse config: " << configFile << std::endl;
* return false;
* }
* return true;
* }
* };
* \endcode
*
* \section parsexml_algorithm Algorithm
*
* 1. Opens the file in binary mode, seeking to end
* 2. Determines file size from stream position
* 3. Allocates buffer and reads entire file
* 4. Passes buffer to TSAXParser::ParseBuffer()
* 5. Cleans up buffer memory
*
* \param saxParser Pointer to a configured TSAXParser object. The parser
* should have its handler connected before calling this function.
* \param startup_path_name Full filesystem path to the XML file to parse.
*
* \return Status code:
* - 0: Success - file parsed without errors
* - 1: File error - could not open or read the file
* - >1: XML parse error from TSAXParser::ParseBuffer()
*
* \see PStartupHandler for an example of XML parsing in musrfit
* \see TSAXParser for ROOT's SAX parser documentation
*/
Int_t parseXmlFile(TSAXParser *saxParser, const char *startup_path_name)
{
@@ -76,5 +113,43 @@ Int_t parseXmlFile(TSAXParser *saxParser, const char *startup_path_name)
return status;
}
// place a void pointer vector for global user function objects which might be needed
//--------------------------------------------------------------------------
/**
* \brief Global storage for user function objects requiring persistent state.
*
* This vector provides a global container for user functions that need to
* maintain state across multiple evaluations or share data between runs.
* It is primarily used by user functions implementing the "global part"
* interface (NeedGlobalPart(), SetGlobalPart(), GlobalPartIsValid()).
*
* \section gGlobalUserFcn_usage Usage Pattern
*
* User functions with expensive initialization (lookup tables, precomputed
* grids, loaded data files) store their global objects here:
*
* \code{.cpp}
* // In user function's SetGlobalPart implementation:
* void TMyFcn::SetGlobalPart(std::vector<void*> &globalPart, UInt_t idx) {
* if (idx < globalPart.size() && globalPart[idx] != nullptr) {
* fGlobal = static_cast<MyGlobalData*>(globalPart[idx]);
* } else {
* fGlobal = new MyGlobalData();
* fGlobal->Initialize(); // Expensive one-time computation
* if (idx < globalPart.size())
* globalPart[idx] = fGlobal;
* else
* globalPart.push_back(fGlobal);
* }
* }
* \endcode
*
* \note The vector stores void pointers, so user functions must cast
* appropriately and manage memory for their specific data types.
*
* \warning User functions are responsible for proper cleanup of their
* global objects to avoid memory leaks.
*
* \see PUserFcnBase::SetGlobalPart() for the interface to populate this vector
* \see PTheory for how global parts are initialized during theory setup
*/
std::vector<void *> gGlobalUserFcn;

View File

@@ -34,15 +34,79 @@
#include "PUserFcnBase.h"
//--------------------------------------------------------------------------------------------
/**
* <p>User function example class. Polynome of 3rd order.
* \brief Example user function implementing a third-order polynomial.
*
* PUserFcn demonstrates how to create custom theory functions by deriving
* from PUserFcnBase. This example implements a cubic polynomial:
*
* \f[ P(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \f]
*
* where \f$a_0, a_1, a_2, a_3\f$ are the polynomial coefficients passed
* as fit parameters.
*
* \section puserfcn_usage Usage in MSR File
*
* To use this function in your analysis:
*
* \code
* FITPARAMETER
* # No Name Value Step Pos_Error Boundaries
* 1 a0 1.0 0.1 none
* 2 a1 0.01 0.001 none
* 3 a2 0.001 0.0001 none
* 4 a3 0.0001 0.00001 none
*
* THEORY
* userFcn libPUserFcn.so PUserFcn 1 2 3 4 (a0, a1, a2, a3)
* \endcode
*
* \section puserfcn_applications Applications
*
* Polynomial backgrounds are useful for:
* - Modeling baseline drifts in long-time measurements
* - Phenomenological fits to slowly varying relaxation
* - Testing the user function infrastructure
*
* \section puserfcn_template As a Template
*
* This class serves as a minimal working example for creating custom
* user functions. To create your own:
*
* 1. Copy PUserFcn.h and PUserFcn.cpp
* 2. Rename the class and update the ClassDef/ClassImp macros
* 3. Implement your physics in the operator() method
* 4. Create a LinkDef.h and build as a shared library
*
* \see PUserFcnBase for the abstract interface and detailed implementation guide
* \see PTheory for how user functions are loaded and evaluated
*/
class PUserFcn : public PUserFcnBase
{
public:
/// \brief Default constructor.
PUserFcn();
/// \brief Destructor.
~PUserFcn();
/**
* \brief Evaluates the third-order polynomial at time t.
*
* Computes:
* \f[ P(t) = \texttt{param[0]} + \texttt{param[1]} \cdot t
* + \texttt{param[2]} \cdot t^2 + \texttt{param[3]} \cdot t^3 \f]
*
* \param t Time value (typically in microseconds)
* \param param Vector of polynomial coefficients:
* - param[0]: constant term \f$a_0\f$
* - param[1]: linear coefficient \f$a_1\f$ (per μs)
* - param[2]: quadratic coefficient \f$a_2\f$ (per μs²)
* - param[3]: cubic coefficient \f$a_3\f$ (per μs³)
*
* \return The polynomial value at time t
*/
Double_t operator()(Double_t t, const std::vector<Double_t> &param) const;
ClassDef(PUserFcn, 1)

View File

@@ -37,52 +37,134 @@
//--------------------------------------------------------------------------------------------
/**
* <p>Abstract base class for user-defined theory functions.
* \brief Abstract base class for user-defined theory functions in musrfit.
*
* <p>PUserFcnBase enables extending musrfit with custom theory functions
* beyond the 33 built-in functions. Users create derived classes implementing
* PUserFcnBase enables extending musrfit with custom theory functions
* beyond the 34 built-in functions. Users create derived classes implementing
* specific physics models, compile them into shared libraries, and load them
* dynamically at runtime.
* dynamically at runtime via ROOT's plugin mechanism.
*
* <p><b>Use cases:</b>
* \section userfcn_use_cases Use Cases
*
* User functions are valuable for:
* - Novel relaxation mechanisms not in standard library
* - Material-specific models (e.g., Skyrmion lattices)
* - Complex multi-component functions
* - Proprietary or experimental theory functions
* - Functions requiring external libraries (GSL, CUDA, etc.)
* - Material-specific models (e.g., Skyrmion lattices, spin ice)
* - Complex multi-component functions requiring custom logic
* - Proprietary or experimental theory functions under development
* - Functions requiring external libraries (GSL, CUDA, MKL, etc.)
* - Performance-critical implementations with custom optimization
*
* <p><b>Implementation steps:</b>
* 1. Create a class deriving from PUserFcnBase
* 2. Implement operator()(t, param) with your theory
* 3. Optionally implement global part for heavy initialization
* 4. Compile to shared library (.so/.dylib/.dll)
* 5. Reference in MSR file THEORY block: "userFcn libMyFunc TMyFuncClass"
* \section userfcn_implementation Implementation Guide
*
* <b>Step 1: Create header file (MyUserFcn.h)</b>
* \code{.cpp}
* #ifndef MY_USER_FCN_H
* #define MY_USER_FCN_H
*
* #include "PUserFcnBase.h"
*
* <p><b>Example minimal implementation:</b>
* @code
* class TMyRelaxation : public PUserFcnBase {
* public:
* Double_t operator()(Double_t t, const std::vector<Double_t> &par) const {
* // par[0] = rate, par[1] = exponent, par[2] = time shift
* Double_t tt = t - par[2];
* if (tt < 0) return 0.0;
* return exp(-pow(par[0]*tt, par[1]));
* }
* TMyRelaxation() {}
* virtual ~TMyRelaxation() {}
*
* virtual Double_t operator()(Double_t t, const std::vector<Double_t> &par) const;
*
* ClassDef(TMyRelaxation, 1)
* };
* @endcode
*
* <p><b>Global part:</b> For expensive one-time computations (lookup tables,
* matrix inversions), override NeedGlobalPart(), SetGlobalPart(), and
* GlobalPartIsValid(). The global part is initialized once and shared across
* all fit iterations.
* #endif
* \endcode
*
* <p><b>MSR file usage:</b>
* @code
* <b>Step 2: Implement source file (MyUserFcn.cpp)</b>
* \code{.cpp}
* #include "MyUserFcn.h"
* #include <cmath>
*
* ClassImp(TMyRelaxation)
*
* Double_t TMyRelaxation::operator()(Double_t t, const std::vector<Double_t> &par) const {
* // par[0] = rate (lambda), par[1] = exponent (beta)
* if (t < 0) return 1.0;
* return exp(-pow(par[0] * t, par[1]));
* }
* \endcode
*
* <b>Step 3: Create LinkDef file (MyUserFcnLinkDef.h)</b>
* \code{.cpp}
* #ifdef __CINT__
* #pragma link off all globals;
* #pragma link off all classes;
* #pragma link off all functions;
*
* #pragma link C++ class TMyRelaxation+;
* #endif
* \endcode
*
* <b>Step 4: Build shared library</b>
* \code{.sh}
* rootcint -f MyUserFcnDict.cxx -c MyUserFcn.h MyUserFcnLinkDef.h
* g++ -shared -fPIC -o libMyUserFcn.so MyUserFcn.cpp MyUserFcnDict.cxx \
* $(root-config --cflags --libs) -I$MUSRFIT/include
* \endcode
*
* <b>Step 5: Use in MSR file</b>
* \code
* THEORY
* asymmetry 1
* userFcn libMyRelax.so TMyRelaxation map1 2 0.5 (rate, expo, tshift)
* @endcode
* userFcn libMyUserFcn.so TMyRelaxation 2 3 (rate, exponent)
* \endcode
*
* \section userfcn_global Global Part for Expensive Computations
*
* For functions requiring expensive one-time setup (lookup tables, matrix
* decompositions, file loading), implement the global part interface:
*
* \code{.cpp}
* class TMyComplexFcn : public PUserFcnBase {
* private:
* mutable void *fGlobal; // Pointer to global data
*
* public:
* virtual Bool_t NeedGlobalPart() const { return true; }
*
* virtual void SetGlobalPart(std::vector<void*> &globalPart, UInt_t idx) {
* if (idx < globalPart.size() && globalPart[idx] != nullptr) {
* fGlobal = globalPart[idx]; // Reuse existing
* } else {
* fGlobal = new MyGlobalData(); // Create new
* static_cast<MyGlobalData*>(fGlobal)->Initialize();
* if (idx < globalPart.size())
* globalPart[idx] = fGlobal;
* else
* globalPart.push_back(fGlobal);
* }
* }
*
* virtual Bool_t GlobalPartIsValid() const {
* return fGlobal != nullptr;
* }
*
* // ... operator() uses fGlobal for fast lookup
* };
* \endcode
*
* \section userfcn_parameters Parameter Conventions
*
* <b>In the MSR file THEORY block:</b>
* \code
* userFcn libName.so ClassName param1 param2 ... paramN
* \endcode
*
* Parameters can be:
* - Direct numbers: \c 1, \c 2 → parameter indices from FITPARAMETER block
* - Map references: \c map1, \c map2 → via RUN block map
* - Function references: \c fun1, \c fun2 → evaluated FUNCTIONS
*
* <b>Convention:</b> The last parameter is typically a time shift.
*
* \see PTheory for how user functions are loaded and called
* \see PUserFcn for a simple example implementation
*/
class PUserFcnBase : public TObject
{