4 Commits

Author SHA1 Message Date
9381b14b87 changed version to 1.1.4 2020-06-09 13:04:48 +02:00
43cb9020c4 adapted for CUDA 11 2020-06-09 12:55:55 +02:00
3d946f666b added the two new muSR functions ifgk and ifll (CUDA/OpenCL). 2019-01-22 14:10:02 +01:00
e6021eb6e3 Set kernel argument size to a value > 0
For the case that map or fun is not used in the msr-file, the corresponding
call to the setKernelArg still needs a 2nd argument > 0, otherwise macOS crashes.
2018-12-11 11:35:32 +01:00
6 changed files with 158 additions and 29 deletions

View File

@ -2,7 +2,7 @@ CMAKE_MINIMUM_REQUIRED (VERSION 3.2)
PROJECT (DKS)
SET (DKS_VERSION_MAJOR 1)
SET (DKS_VERSION_MINOR 1)
SET (DKS_VERSION_PATCH 2)
SET (DKS_VERSION_PATCH 4)
set (DKS_VERSION ${DKS_VERSION_MAJOR}.${DKS_VERSION_MINOR}.${DKS_VERSION_PATCH})
SET (PACKAGE \"dks\")
SET (PACKAGE_BUGREPORT \"locans.uldis@psi.ch\")

View File

@ -1,7 +1,7 @@
##################################################################
#
# Name: Dynamic Kernel Scheduler
# Version: 1.0
# Version: 1.1
# Author: Uldis Locans
# Contacts: locans.uldis@psi.ch
#

View File

@ -86,15 +86,19 @@ int CudaChiSquareRuntime::compileProgram(std::string function, bool mlh) {
//create program
nvrtcProgram prog;
//std::cout << cudaProg.c_str() << std::endl;
nvrtcCreateProgram(&prog, cudaProg.c_str(), "chiSquareRuntime.cu", 0, NULL, NULL);
// std::cout << cudaProg.c_str() << std::endl;
nvrtcResult createResult = nvrtcCreateProgram(&prog, cudaProg.c_str(), "chiSquareRuntime.cu", 0, NULL, NULL);
if (createResult != NVRTC_SUCCESS) {
DEBUG_MSG("Program creation failed!");
return DKS_ERROR;
}
//compile program
const char *opts[] = {"-fmad=false", ""};
int numopts = 1;
const char *opts[] = {"-arch=compute_35", "-fmad=false", ""};
int numopts = 2;
if (mlh) {
opts[1] = "-DMLH";
numopts = 2;
opts[2] = "-DMLH";
numopts = 3;
}
nvrtcResult compileResults = nvrtcCompileProgram(prog, numopts, opts);
@ -118,7 +122,11 @@ int CudaChiSquareRuntime::compileProgram(std::string function, bool mlh) {
if (ptx_m != NULL)
delete[] ptx_m;
size_t ptxSize;
nvrtcGetPTXSize(prog, &ptxSize);
nvrtcResult ptxSizeResult = nvrtcGetPTXSize(prog, &ptxSize);
if (ptxSizeResult != NVRTC_SUCCESS) {
DEBUG_MSG("PTX get size error!");
return DKS_ERROR;
}
ptx_m = new char[ptxSize];
nvrtcResult nvrtcPTXResult = nvrtcGetPTX(prog, ptx_m);
@ -127,10 +135,26 @@ int CudaChiSquareRuntime::compileProgram(std::string function, bool mlh) {
return DKS_ERROR;
}
// add some additional diagnostics
const int buffer_size = 8192;
CUjit_option options[3];
void* values[3];
char error_log[buffer_size];
int err;
options[0] = CU_JIT_ERROR_LOG_BUFFER;
values[0] = (void*)error_log;
options[1] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
values[1] = (void*)buffer_size;
options[2] = CU_JIT_TARGET_FROM_CUCONTEXT;
values[2] = 0;
//load module from ptx
CUresult loadResult = cuModuleLoadDataEx(&module_m, ptx_m, 0, 0, 0);
CUresult loadResult = cuModuleLoadDataEx(&module_m, ptx_m, 3, options, values);
if (loadResult != CUDA_SUCCESS) {
DEBUG_MSG("Load module from ptx failed!");
const char *err_msg;
cuGetErrorString(loadResult, &err_msg);
std::string msg = "Load module from ptx failed! (" + std::to_string(loadResult) + ") : " + err_msg;
DEBUG_MSG(msg);
DEBUG_MSG(error_log);
return DKS_ERROR;
}

View File

@ -83,6 +83,56 @@ __device__ double ifld(double t, double alpha, double phi, double nu, double lam
return alpha*cos(wt+ph)*exp(-lambdaT*t) + (1.0-alpha)*exp(-lambdaL*t);
}
__device__ double ifgk(double t, double alpha, double nu, double sigma, double lambda, double beta) {
double wt = TWO_PI*nu*t;
double rate2 = sigma*sigma*t*t;
double rateL = 0.0;
double result = 0.0;
// make sure lambda > 0
if (lambda < 0.0)
return 0.0;
if (beta < 0.001) {
rateL = 1.0;
} else {
rateL = pow(lambda*t, beta);
}
if (nu < 0.01) {
result = (1.0-alpha)*exp(-rateL) + alpha*(1.0-rate2)*exp(-0.5*rate2);
} else {
result = (1.0-alpha)*exp(-rateL) + alpha*(cos(wt)-sigma*sigma*t*t/(wt)*sin(wt))*exp(-0.5*rate2);
}
return result;
}
__device__ double ifll(double t, double alpha, double nu, double a, double lambda, double beta) {
double wt = TWO_PI*nu*t;
double at = a*t;
double rateL = 0.0;
double result = 0.0;
// make sure lambda > 0
if (lambda < 0.0)
return 0.0;
if (beta < 0.001) {
rateL = 1.0;
} else {
rateL = pow(lambda*t, beta);
}
if (nu < 0.01) {
result = (1.0-alpha)*exp(-rateL) + alpha*(1.0-at)*exp(-at);
} else {
result = (1.0-alpha)*exp(-rateL) + alpha*(cos(wt)-a/(TWO_PI*nu)*sin(wt))*exp(-at);
}
return result;
}
__device__ double b(double t, double phi, double nu) {
return j0(TWO_PI*nu*t + DEG_TO_RAD*phi);
}

View File

@ -42,7 +42,7 @@ std::string OpenCLChiSquareRuntime::buildProgram(std::string function) {
if (!fp)
DEBUG_MSG("Can't open kernel file" << kernel_file);
//get file size and allocate memory
//get file size and allocate memory
fseek(fp, 0, SEEK_END);
fsize = ftell(fp);
kernel_source = new char[fsize+1];
@ -52,7 +52,7 @@ std::string OpenCLChiSquareRuntime::buildProgram(std::string function) {
fread(kernel_source, 1, sizeof(char)*fsize, fp);
kernel_source[fsize] = '\0';
fclose(fp);
std::string kernel_string (kernel_source);
return kernel_string + openclFunctHeader + "return " + function + ";" + openclFunctFooter;
@ -76,7 +76,6 @@ int OpenCLChiSquareRuntime::compileProgram(std::string function, bool mlh) {
double OpenCLChiSquareRuntime::calculateSum(cl_mem data, int length) {
int ierr;
//calc number of threads per workgroup and nr of work groups
size_t work_size_sum = (size_t)blockSize_m;
@ -87,7 +86,7 @@ double OpenCLChiSquareRuntime::calculateSum(cl_mem data, int length) {
work_items = (length / work_size_sum + 1) * work_size_sum;
int work_groups = length / work_size_sum + 1;
*/
size_t work_items = 80 * work_size_sum;
int work_groups = 80;
@ -96,19 +95,19 @@ double OpenCLChiSquareRuntime::calculateSum(cl_mem data, int length) {
double *partial_sums = new double[work_groups];
tmp_ptr = m_oclbase->ocl_allocateMemory(work_groups * sizeof(double), ierr);
//execute sum kernel
m_oclbase->ocl_createKernel("parallelReductionTwoPhase");
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &data);
m_oclbase->ocl_setKernelArg(1, sizeof(cl_mem), &tmp_ptr);
m_oclbase->ocl_setKernelArg(2, work_size_sum*sizeof(double), NULL);
m_oclbase->ocl_setKernelArg(3, sizeof(int), &length);
m_oclbase->ocl_setKernelArg(3, sizeof(int), &length);
m_oclbase->ocl_executeKernel(1, &work_items, &work_size_sum);
//read partial sums and free temp mempry
//read partial sums and free temp memory
m_oclbase->ocl_readData(tmp_ptr, partial_sums, sizeof(double)*work_groups);
m_oclbase->ocl_freeMemory(tmp_ptr);
//sumup partial sums on the host
double result = 0;
for (int i = 0; i < work_groups; i++)
@ -157,6 +156,7 @@ int OpenCLChiSquareRuntime::launchChiSquare(int fitType,
return ierr;
//set kernel args
size_t num=1;
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &cl_mem_data);
m_oclbase->ocl_setKernelArg(1, sizeof(cl_mem), &cl_mem_err);
m_oclbase->ocl_setKernelArg(2, sizeof(cl_mem), &cl_param);
@ -172,20 +172,23 @@ int OpenCLChiSquareRuntime::launchChiSquare(int fitType,
m_oclbase->ocl_setKernelArg(12, sizeof(double), &tau_m);
m_oclbase->ocl_setKernelArg(13, sizeof(double), &N0_m);
m_oclbase->ocl_setKernelArg(14, sizeof(double), &bkg_m);
m_oclbase->ocl_setKernelArg(15, sizeof(double)*numpar, NULL);
m_oclbase->ocl_setKernelArg(16, sizeof(double)*numfunc, NULL);
m_oclbase->ocl_setKernelArg(17, sizeof(int)*nummap, NULL);
num = numpar; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(15, sizeof(double)*num, NULL);
num = numfunc; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(16, sizeof(double)*num, NULL);
num = nummap; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(17, sizeof(int)*num, NULL);
if (ierr != DKS_SUCCESS)
return ierr;
} else if (fitType == FITTYPE_ASYMMETRY) {
//create kernel
ierr = m_oclbase->ocl_createKernel("kernelChiSquareAsymmetry");
if (ierr != DKS_SUCCESS)
return ierr;
//set kernel args
size_t num=1;
m_oclbase->ocl_setKernelArg(0, sizeof(cl_mem), &cl_mem_data);
m_oclbase->ocl_setKernelArg(1, sizeof(cl_mem), &cl_mem_err);
m_oclbase->ocl_setKernelArg(2, sizeof(cl_mem), &cl_param);
@ -200,9 +203,12 @@ int OpenCLChiSquareRuntime::launchChiSquare(int fitType,
m_oclbase->ocl_setKernelArg(11, sizeof(double), &timeStep);
m_oclbase->ocl_setKernelArg(12, sizeof(double), &alpha_m);
m_oclbase->ocl_setKernelArg(13, sizeof(double), &beta_m);
m_oclbase->ocl_setKernelArg(14, sizeof(double)*numpar, NULL);
m_oclbase->ocl_setKernelArg(15, sizeof(double)*numfunc, NULL);
m_oclbase->ocl_setKernelArg(16, sizeof(int)*nummap, NULL);
num = numpar; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(14, sizeof(double)*num, NULL);
num = numfunc; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(15, sizeof(double)*num, NULL);
num = nummap; if (num == 0) num = 1;
m_oclbase->ocl_setKernelArg(16, sizeof(int)*num, NULL);
if (ierr != DKS_SUCCESS)
return ierr;
@ -250,7 +256,7 @@ int OpenCLChiSquareRuntime::writeMap(const int *map, int nummap) {
return ierr;
}
int OpenCLChiSquareRuntime::initChiSquare(int size_data, int size_param,
int OpenCLChiSquareRuntime::initChiSquare(int size_data, int size_param,
int size_func, int size_map)
{
@ -285,7 +291,7 @@ int OpenCLChiSquareRuntime::freeChiSquare() {
ierr = m_oclbase->ocl_freeMemory((cl_mem)mem_param_m);
ierr = m_oclbase->ocl_freeMemory((cl_mem)mem_func_m);
ierr = m_oclbase->ocl_freeMemory((cl_mem)mem_map_m);
initDone_m = false;
}
@ -321,4 +327,3 @@ int OpenCLChiSquareRuntime::checkChiSquareKernels(int fitType, int &threadsPerBl
return ierr;
}

View File

@ -106,6 +106,56 @@ double ifld(double t, double alpha, double phi, double nu, double lambdaT, doubl
return alpha*cos(wt+ph)*exp(-lambdaT*t) + (1.0-alpha)*exp(-lambdaL*t);
}
double ifgk(double t, double alpha, double nu, double sigma, double lambda, double beta) {
double wt = TWO_PI*nu*t;
double rate2 = sigma*sigma*t*t;
double rateL = 0.0;
double result = 0.0;
// make sure lambda > 0
if (lambda < 0.0)
return 0.0;
if (beta < 0.001) {
rateL = 1.0;
} else {
rateL = pow(lambda*t, beta);
}
if (nu < 0.01) {
result = (1.0-alpha)*exp(-rateL) + alpha*(1.0-rate2)*exp(-0.5*rate2);
} else {
result = (1.0-alpha)*exp(-rateL) + alpha*(cos(wt)-sigma*sigma*t*t/(wt)*sin(wt))*exp(-0.5*rate2);
}
return result;
}
double ifll(double t, double alpha, double nu, double a, double lambda, double beta) {
double wt = TWO_PI*nu*t;
double at = a*t;
double rateL = 0.0;
double result = 0.0;
// make sure lambda > 0
if (lambda < 0.0)
return 0.0;
if (beta < 0.001) {
rateL = 1.0;
} else {
rateL = pow(lambda*t, beta);
}
if (nu < 0.01) {
result = (1.0-alpha)*exp(-rateL) + alpha*(1.0-at)*exp(-at);
} else {
result = (1.0-alpha)*exp(-rateL) + alpha*(cos(wt)-a/(TWO_PI*nu)*sin(wt))*exp(-at);
}
return result;
}
double b(double t, double phi, double nu) {
return bessj0(TWO_PI*nu*t + DEG_TO_RAD*phi);
}