pydase/docs/user-guide/Configuration.md
2024-11-18 09:21:56 +01:00

212 lines
6.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Configuring `pydase`
## Do I Need to Configure My `pydase` Service?
`pydase` services work out of the box without requiring any configuration. However, you
might want to change some options, such as the web server port or logging level. To
accommodate such customizations, `pydase` allows configuration through environment
variables - avoiding hard-coded settings in your service code.
Why should you avoid hard-coding configurations? Here are two reasons:
1. **Security**:
Protect sensitive information, such as usernames and passwords. By using environment
variables, your service code can remain public while keeping private information
secure.
2. **Reusability**:
Services often need to be reused in different environments. For example, you might
deploy multiple instances of a service (e.g., for different sensors in a lab). By
separating configuration from code, you can adapt the service to new requirements
without modifying its codebase.
Next, well walk you through the environment variables `pydase` supports and provide an
example of how to separate service code from configuration.
## Configuring `pydase` Using Environment Variables
`pydase` provides the following environment variables for customization:
- **`ENVIRONMENT`**:
Defines the operation mode (`"development"` or `"production"`), which influences
behaviour such as logging (see [Logging in pydase](https://github.com/tiqi-group/pydase?tab=readme-ov-file#logging-in-pydase)).
- **`SERVICE_CONFIG_DIR`**:
Specifies the directory for configuration files (e.g., `web_settings.json`). Defaults
to the `config` folder in the service root. Access this programmatically using:
```python
import pydase.config
pydase.config.ServiceConfig().config_dir
```
- **`SERVICE_WEB_PORT`**:
Defines the web servers port. Ensure each service on the same host uses a unique
port. Default: `8001`.
- **`GENERATE_WEB_SETTINGS`**:
When `true`, generates or updates the `web_settings.json` file. Existing entries are
preserved, and new entries are appended.
### Configuring `pydase` via Keyword Arguments
Some settings can also be overridden directly in your service code using keyword
arguments when initializing the server. This allows for flexibility in code-based
configuration:
```python
import pathlib
from pydase import Server
from your_service_module import YourService
server = Server(
YourService(),
web_port=8080, # Overrides SERVICE_WEB_PORT
config_dir=pathlib.Path("custom_config"), # Overrides SERVICE_CONFIG_DIR
generate_web_settings=True # Overrides GENERATE_WEB_SETTINGS
).run()
```
## Separating Service Code from Configuration
To decouple configuration from code, `pydase` utilizes `confz` for configuration
management. Below is an example that demonstrates how to configure a `pydase` service
for a sensor readout application.
### Scenario: Configuring a Sensor Service
Imagine you have multiple sensors distributed across your lab. You need to configure
each service instance with:
1. **Hostname**: The hostname or IP address of the sensor.
2. **Authentication Token**: A token or credentials to authenticate with the sensor.
3. **Readout Interval**: A periodic interval to read sensor data and log it to a
database.
Given the repository structure:
```bash title="Service Repository Structure"
my_sensor
├── pyproject.toml
├── README.md
└── src
└── my_sensor
├── my_sensor.py
├── config.py
├── __init__.py
└── __main__.py
```
Your service might look like this:
### Configuration
Define the configuration using `confz`:
```python title="src/my_sensor/config.py"
import confz
from pydase.config import ServiceConfig
class MySensorConfig(confz.BaseConfig):
instance_name: str
hostname: str
auth_token: str
readout_interval_s: float
CONFIG_SOURCES = confz.FileSource(file=ServiceConfig().config_dir / "config.yaml")
```
This class defines configurable parameters and loads values from a `config.yaml` file
located in the services configuration directory (which is configurable through an
environment variable, see [above](#configuring-pydase-using-environment-variables)).
A sample YAML file might look like this:
```yaml title="config.yaml"
instance_name: my-sensor-service-01
hostname: my-sensor-01.example.com
auth_token: my-secret-authentication-token
readout_interval_s: 5
```
### Service Implementation
Your service implementation might look like this:
```python title="src/my_sensor/my_sensor.py"
import asyncio
import http.client
import json
import logging
from typing import Any
import pydase.components
import pydase.units as u
from pydase.task.decorator import task
from my_sensor.config import MySensorConfig
logger = logging.getLogger(__name__)
class MySensor(pydase.DataService):
def __init__(self) -> None:
super().__init__()
self.readout_interval_s: u.Quantity = (
MySensorConfig().readout_interval_s * u.units.s
)
@property
def hostname(self) -> str:
"""Hostname of the sensor. Read-only."""
return MySensorConfig().hostname
def _get_data(self) -> dict[str, Any]:
"""Fetches sensor data via an HTTP GET request. It passes the authentication
token as "Authorization" header."""
connection = http.client.HTTPConnection(self.hostname, timeout=10)
connection.request(
"GET", "/", headers={"Authorization": MySensorConfig().auth_token}
)
response = connection.getresponse()
connection.close()
return json.loads(response.read())
@task(autostart=True)
async def get_and_log_sensor_values(self) -> None:
"""Periodically fetches and logs sensor data."""
while True:
try:
data = self._get_data()
# Write data to database using MySensorConfig().instance_name ...
except Exception as e:
logger.error(
"Error occurred, retrying in %s seconds. Error: %s",
self.readout_interval_s.m,
e,
)
await asyncio.sleep(self.readout_interval_s.m)
```
### Starting the Service
The service is launched via the `__main__.py` entry point:
```python title="src/my_sensor/__main__.py"
import pydase
from my_sensor.my_sensor import MySensor
pydase.Server(MySensor()).run()
```
You can now start the service with:
```bash
python -m my_sensor
```
This approach ensures the service is fully configured via the `config.yaml` file,
separating service logic from configuration.