This commit adds a struct type CommonArgs that is to be embedded in
every plugin's argument struct. It contains a field named
"IgnoreUnknown" which will be parsed as a boolean and can be provided to
ignore unknown arguments passed to the plugin.
This is an attempt to testing the PluginMain() function of the skel pkg.
We should be able to do better by using a mockable interface for the
plugins, but this is a start.
The 'flannel' meta plugin delegates to other plugins to do the actual
OS-level work. It used the ipam.Exec{Add,Del} procedures for this
delegation, since those do precisely what's needed.
However this is a bit misleading, since the flannel plugin _isn't_
doing this for IPAM, and the ipam.Exec* procedures aren't doing
something specific to IPAM plugins.
So: anticipating that there may be more meta plugins that want to
delegate in the same way, this commit moves generic delegation
procedures to `pkg/invoke`, and makes the `pkg/ipam` procedures (still
used, accurately, in the non-meta plugins) shims.
appc/cni#76 added a "dns" field in the result JSON. But before this
patch, the plugins had no way of knowing which name server to return.
There could be two ways of knowing which name server to return:
1. add it as an extra argument ("CNI_ARGS")
2. add it in the network configuration as a convenience (received via
stdin)
I chose the second way because it is easier. In the case of rkt, it
means the user could just add the DNS name servers in
/etc/rkt/net.d/mynetwork.conf.
When plugin is executed with a DEL command, it does not
print result to stdout unless there is an error. Therefore
it stdout bytes should not be passed to json.Unmarshal.
This takes some of the machinery from CNI and from the rkt networking
code, and turns it into a library that can be linked into go apps.
Included is an example command-line application that uses the library,
called `cnitool`.
Other headline changes:
* Plugin exec'ing is factored out
The motivation here is to factor out the protocol for invoking
plugins. To that end, a generalisation of the code from api.go and
pkg/plugin/ipam.go goes into pkg/invoke/exec.go.
* Move argument-handling and conf-loading into public API
The fact that the arguments get turned into an environment for the
plugin is incidental to the API; so, provide a way of supplying them
as a struct or saying "just use the same arguments as I got" (the
latter is for IPAM plugins).
A specific IP can now be requested via the environment variable CNI_ARGS, e.g.
`CNI_ARGS=ip=1.2.3.4`.
The plugin will try to reserve the specified IP.
If this is not successful the execution will fail.
Path rewriting causes too many problems when vendoring
vendored code. When CNI code is vendored into rkt,
godep has problems code already vendored by CNI.
When plugin errors out, it prints out a JSON object to stdout
describing the failure. This object needs to be propagated out
through the plugins and to the container runtime. This change
also adds Print method to both the result and error structs
for easy serialization to stdout.
The plugin binary actually functions in two modes. The first mode
is a regular CNI plugin. The second mode (when stared with "daemon" arg)
runs a DHCP client daemon. When executed as a CNI plugin, it issues
an RPC request to the daemon for actual processing. The daemon is
required since a DHCP lease needs to be maintained by periodically
renewing it. One instance of the daemon can server arbitrary number
of containers/leases.
This adds basic plugins.
"main" types: veth, bridge, macvlan
"ipam" type: host-local
The code has been ported over from github.com/coreos/rkt project
and adapted to fit the CNI spec.