152 lines
4.6 KiB
Python
152 lines
4.6 KiB
Python
import pytest
|
|
import numpy as np
|
|
import unittest.mock
|
|
|
|
import cristallina.analysis
|
|
import cristallina.utils
|
|
|
|
__author__ = "Alexander Steppke"
|
|
|
|
|
|
def test_joblib_memory():
|
|
"""We need joblib for fast caching of intermediate results in all cases. So we check
|
|
if the basic function caching to disk works.
|
|
"""
|
|
|
|
def calc_example(x):
|
|
return x**2
|
|
|
|
calc_cached = cristallina.analysis.memory.cache(calc_example)
|
|
|
|
assert calc_cached(8) == 64
|
|
assert calc_cached.check_call_in_cache(8) == True
|
|
|
|
|
|
@unittest.mock.patch(
|
|
"jungfrau_utils.file_adapter.locate_gain_file",
|
|
lambda path, **kwargs: "tests/data/gains.h5",
|
|
)
|
|
@unittest.mock.patch(
|
|
"jungfrau_utils.file_adapter.locate_pedestal_file",
|
|
lambda path, **kwargs: "tests/data/JF16T03V01.res.h5",
|
|
)
|
|
def test_image_calculations():
|
|
res = cristallina.analysis.perform_image_calculations(["tests/data/p20841/raw/run0185/data/acq0001.*.h5"])
|
|
# these values are only correct when using the specific gain and pedestal files included in the test data
|
|
# they do not correspond to the gain and pedestal files used in the actual analysis
|
|
intensity = [
|
|
1712858.6,
|
|
693994.06,
|
|
1766390.0,
|
|
1055504.9,
|
|
1516520.9,
|
|
461969.06,
|
|
3148285.5,
|
|
934917.5,
|
|
1866691.6,
|
|
798191.2,
|
|
2250207.0,
|
|
453842.6,
|
|
]
|
|
assert np.allclose(res["JF16T03V01_intensity"], intensity)
|
|
|
|
|
|
@unittest.mock.patch(
|
|
"jungfrau_utils.file_adapter.locate_gain_file",
|
|
lambda path, **kwargs: "tests/data/gains.h5",
|
|
)
|
|
@unittest.mock.patch(
|
|
"jungfrau_utils.file_adapter.locate_pedestal_file",
|
|
lambda path, **kwargs: "tests/data/JF16T03V01.res.h5",
|
|
)
|
|
def test_roi_calculation():
|
|
roi = cristallina.utils.ROI(left=575, right=750, top=750, bottom=600)
|
|
|
|
cutouts = cristallina.analysis.perform_image_roi_crop(["tests/data/p20841/raw/run0205/data/acq0001.*.h5"], roi=roi)
|
|
|
|
sum_roi, max_roi, min_roi = (
|
|
np.sum(cutouts[11]),
|
|
np.max(cutouts[11]),
|
|
np.min(cutouts[11]),
|
|
)
|
|
|
|
# these values are only correct when using the specific gain and pedestal files included in the test data
|
|
# they do not correspond to the gain and pedestal files used in the actual analysis
|
|
assert np.allclose([3119071.8, 22381.547, -0.9425874], [sum_roi, max_roi, min_roi])
|
|
|
|
|
|
def test_minimal_2d_gaussian():
|
|
image = np.array(
|
|
[
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 1, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
]
|
|
)
|
|
|
|
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(image)
|
|
assert np.allclose(center_x, 2.0, rtol=1e-04)
|
|
assert np.allclose(center_y, 2.0, rtol=1e-04)
|
|
|
|
|
|
def test_2d_gaussian():
|
|
# define normalized 2D gaussian
|
|
def gauss2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
|
|
return 1 / (2 * np.pi * sx * sy) * np.exp(-((x - mx) ** 2 / (2 * sx**2.0) + (y - my) ** 2 / (2 * sy**2)))
|
|
|
|
x = np.arange(0, 150, 1)
|
|
y = np.arange(0, 100, 1)
|
|
x, y = np.meshgrid(x, y)
|
|
|
|
z = gauss2d(x, y, mx=40, my=50, sx=20, sy=40)
|
|
|
|
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(z)
|
|
assert np.allclose(center_x, 40, rtol=1e-04)
|
|
assert np.allclose(center_y, 50, rtol=1e-04)
|
|
|
|
|
|
def test_2d_gaussian_rotated():
|
|
# define normalized 2D gaussian
|
|
def gauss2d_rotated(x=0, y=0, center_x=0, center_y=0, sx=1, sy=1, rotation=0):
|
|
sr = np.sin(rotation)
|
|
cr = np.cos(rotation)
|
|
|
|
center_x_rot = center_x * cr - center_y * sr
|
|
center_y_rot = center_x * sr + center_y * cr
|
|
|
|
x_rot = x * cr - y * sr
|
|
y_rot = x * sr + y * cr
|
|
|
|
return (
|
|
1
|
|
/ (2 * np.pi * sx * sy)
|
|
* np.exp(-((x_rot - center_x_rot) ** 2 / (2 * sx**2.0) + (y_rot - center_y_rot) ** 2 / (2 * sy**2)))
|
|
)
|
|
|
|
x = np.arange(0, 150, 1)
|
|
y = np.arange(0, 100, 1)
|
|
x, y = np.meshgrid(x, y)
|
|
|
|
z = 100 * gauss2d_rotated(x, y, center_x=40, center_y=50, sx=10, sy=20, rotation=0.5)
|
|
|
|
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian_rotated(z, vary_rotation=True, plot=False)
|
|
assert np.allclose(center_x, 40, rtol=1e-04)
|
|
assert np.allclose(center_y, 50, rtol=1e-04)
|
|
assert np.allclose(result.params["rotation"].value, 0.5, rtol=1e-02)
|
|
|
|
|
|
def test_1d_gaussian():
|
|
def gauss(x, H, A, x0, sigma):
|
|
return H + A * np.exp(-((x - x0) ** 2) / (2 * sigma**2))
|
|
|
|
x = np.linspace(0, 20)
|
|
y = gauss(x, 0.5, 2, 10, 4)
|
|
|
|
res = cristallina.analysis.fit_1d_gaussian(x, y)
|
|
|
|
assert np.allclose(res.values["center"], 10)
|
|
assert np.allclose(res.values["sigma"], 4)
|
|
assert np.allclose(res.values["height"], 2)
|