added 1D Gauss fit with LMFIT

This commit is contained in:
2023-11-22 23:08:02 +01:00
parent 19eeee0b37
commit 087b4406b8
2 changed files with 139 additions and 69 deletions

View File

@@ -549,3 +549,35 @@ def fit_2d_gaussian_rotated(
_plot_2d_gaussian_fit(im, z, mod, result)
return center_x, center_y, result
def fit_1d_gaussian(x, y, use_offset=True, ax=None, print_results=False):
"""
1D-Gaussian fit with optional constant offset using LMFIT.
Uses a heuristic guess for initial parameters.
Returns: lmfit.model.ModelResult
"""
peak = lmfit.models.GaussianModel()
offset = lmfit.models.ConstantModel()
model = peak + offset
if use_offset:
pars = offset.make_params(c = np.median(y))
else:
pars = offset.make_params(c=0)
pars['c'].vary = False
pars += peak.guess(y, x, amplitude=(np.max(y)-np.min(y))/2)
result = model.fit(y, pars, x=x,)
if print_results:
print(result.fit_report())
if ax is not None:
ax.plot(x, result.best_fit, label='fit')
return result

View File

@@ -9,105 +9,143 @@ __author__ = "Alexander Steppke"
def test_joblib_memory():
""" We need joblib for fast caching of intermediate results in all cases. So we check
if the basic function caching to disk works.
"""
def calc_example(x):
return x**2
calc_cached = cristallina.analysis.memory.cache(calc_example)
"""We need joblib for fast caching of intermediate results in all cases. So we check
if the basic function caching to disk works.
"""
assert calc_cached(8) == 64
assert calc_cached.check_call_in_cache(8) == True
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_gain_file", lambda path, **kwargs: "tests/data/gains.h5")
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_pedestal_file", lambda path, **kwargs: "tests/data/JF16T03V01.res.h5")
def calc_example(x):
return x**2
calc_cached = cristallina.analysis.memory.cache(calc_example)
assert calc_cached(8) == 64
assert calc_cached.check_call_in_cache(8) == True
@unittest.mock.patch(
"jungfrau_utils.file_adapter.locate_gain_file",
lambda path, **kwargs: "tests/data/gains.h5",
)
@unittest.mock.patch(
"jungfrau_utils.file_adapter.locate_pedestal_file",
lambda path, **kwargs: "tests/data/JF16T03V01.res.h5",
)
def test_image_calculations():
res = cristallina.analysis.perform_image_calculations(['tests/data/p20841/raw/run0185/data/acq0001.*.h5'])
res = cristallina.analysis.perform_image_calculations(["tests/data/p20841/raw/run0185/data/acq0001.*.h5"])
# these values are only correct when using the specific gain and pedestal files included in the test data
# they do not correspond to the gain and pedestal files used in the actual analysis
intensity = [1712858.6,
693994.06,
1766390.0,
1055504.9,
1516520.9,
461969.06,
3148285.5,
934917.5,
1866691.6,
798191.2,
2250207.0,
453842.6]
intensity = [
1712858.6,
693994.06,
1766390.0,
1055504.9,
1516520.9,
461969.06,
3148285.5,
934917.5,
1866691.6,
798191.2,
2250207.0,
453842.6,
]
assert np.allclose(res["JF16T03V01_intensity"], intensity)
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_gain_file", lambda path, **kwargs: "tests/data/gains.h5")
@unittest.mock.patch("jungfrau_utils.file_adapter.locate_pedestal_file", lambda path, **kwargs: "tests/data/JF16T03V01.res.h5")
@unittest.mock.patch(
"jungfrau_utils.file_adapter.locate_gain_file",
lambda path, **kwargs: "tests/data/gains.h5",
)
@unittest.mock.patch(
"jungfrau_utils.file_adapter.locate_pedestal_file",
lambda path, **kwargs: "tests/data/JF16T03V01.res.h5",
)
def test_roi_calculation():
roi = cristallina.utils.ROI(left=575, right=750, top=750, bottom=600)
cutouts = cristallina.analysis.perform_image_roi_crop(['tests/data/p20841/raw/run0205/data/acq0001.*.h5'], roi=roi)
sum_roi, max_roi, min_roi = np.sum(cutouts[11]), np.max(cutouts[11]), np.min(cutouts[11])
cutouts = cristallina.analysis.perform_image_roi_crop(["tests/data/p20841/raw/run0205/data/acq0001.*.h5"], roi=roi)
sum_roi, max_roi, min_roi = (
np.sum(cutouts[11]),
np.max(cutouts[11]),
np.min(cutouts[11]),
)
# these values are only correct when using the specific gain and pedestal files included in the test data
# they do not correspond to the gain and pedestal files used in the actual analysis
assert np.allclose([3119071.8, 22381.547, -0.9425874 ], [sum_roi, max_roi, min_roi])
assert np.allclose([3119071.8, 22381.547, -0.9425874], [sum_roi, max_roi, min_roi])
def test_minimal_2d_gaussian():
image = np.array(
[
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
)
image = np.array([[0,0,0,0,0],
[0,0,0,0,0],
[0,0,1,0,0],
[0,0,0,0,0],
[0,0,0,0,0],
])
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(image)
assert np.allclose(center_x, 2.0, rtol=1e-04)
assert np.allclose(center_y, 2.0, rtol=1e-04)
def test_2d_gaussian():
# define normalized 2D gaussian
def gauss2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
return 1 / (2 * np.pi * sx * sy) * np.exp(-((x - mx) ** 2 / (2 * sx**2.0) + (y - my) ** 2 / (2 * sy**2)))
# define normalized 2D gaussian
def gauss2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
return (1 / (2 * np.pi * sx * sy) * np.exp(-((x - mx) ** 2 / (2 * sx**2.0) + (y - my) ** 2 / (2 * sy**2))))
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
z = gauss2d(x, y, mx=40, my=50, sx=20, sy=40)
z = gauss2d(x, y, mx=40, my=50, sx=20, sy=40)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(z)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian(z)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
def test_2d_gaussian_rotated():
# define normalized 2D gaussian
def gauss2d_rotated(x=0, y=0, center_x=0, center_y=0, sx=1, sy=1, rotation=0):
sr = np.sin(rotation)
cr = np.cos(rotation)
# define normalized 2D gaussian
def gauss2d_rotated(x=0, y=0, center_x=0, center_y=0, sx=1, sy=1, rotation=0):
center_x_rot = center_x * cr - center_y * sr
center_y_rot = center_x * sr + center_y * cr
sr = np.sin(rotation)
cr = np.cos(rotation)
x_rot = x * cr - y * sr
y_rot = x * sr + y * cr
center_x_rot = center_x * cr - center_y * sr
center_y_rot = center_x * sr + center_y * cr
return (
1
/ (2 * np.pi * sx * sy)
* np.exp(-((x_rot - center_x_rot) ** 2 / (2 * sx**2.0) + (y_rot - center_y_rot) ** 2 / (2 * sy**2)))
)
x_rot = x * cr - y * sr
y_rot = x * sr + y * cr
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
return (1 / (2 * np.pi * sx * sy) * np.exp(-((x_rot - center_x_rot) ** 2 / (2 * sx**2.0) + (y_rot - center_y_rot) ** 2 / (2 * sy**2))))
z = 100 * gauss2d_rotated(x, y, center_x=40, center_y=50, sx=10, sy=20, rotation=0.5)
x = np.arange(0, 150, 1)
y = np.arange(0, 100, 1)
x, y = np.meshgrid(x, y)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian_rotated(z, vary_rotation=True, plot=False)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
assert np.allclose(result.params["rotation"].value, 0.5, rtol=1e-02)
z = 100*gauss2d_rotated(x, y, center_x=40, center_y=50, sx=10, sy=20, rotation=0.5)
center_x, center_y, result = cristallina.analysis.fit_2d_gaussian_rotated(z, vary_rotation=True, plot=False)
assert np.allclose(center_x, 40, rtol=1e-04)
assert np.allclose(center_y, 50, rtol=1e-04)
assert np.allclose(result.params['rotation'].value, 0.5, rtol=1e-02)
def test_1d_gaussian():
def gauss(x, H, A, x0, sigma):
return H + A * np.exp(-((x - x0) ** 2) / (2 * sigma**2))
x = np.linspace(0, 20)
y = gauss(x, 0.5, 2, 10, 4)
res = cristallina.analysis.fit_1d_gaussian(x, y)
assert np.allclose(res.values["center"], 10)
assert np.allclose(res.values["sigma"], 4)
assert np.allclose(res.values["height"], 2)