Testing the username filter

This commit is contained in:
2021-02-25 15:56:03 +01:00
parent 8ddf6f755f
commit 3d448c6db9
2 changed files with 90 additions and 0 deletions

View File

@ -0,0 +1,11 @@
{
"name" : "merlin6-test",
"worker_bin_path" : "/data/user/USERNAME/cryosparc/cryosparc2_worker/bin/cryosparcw",
"cache_path" : "/scratch/",
"send_cmd_tpl" : "{{ command }}",
"qsub_cmd_tpl" : "sbatch {{ script_path_abs }}",
"qstat_cmd_tpl" : "squeue -j {{ cluster_job_id }}",
"qdel_cmd_tpl" : "scancel {{ cluster_job_id }}",
"qinfo_cmd_tpl" : "sinfo",
"transfer_cmd_tpl" : "cp {{ src_path }} {{ dest_path }}"
}

View File

@ -0,0 +1,79 @@
#!/usr/bin/env bash
# cryoSPARC cluster submission script template for SLURM
# Lane: merlin6-test v1.2.1 (2020-03-27)
#
# If you edit this file, run 'cryosparcm cluster connect'
{# This template uses jinja2 syntax. #}
{%- macro _min(a, b) -%}
{%- if a <= b %}{{a}}{% else %}{{b}}{% endif -%}
{%- endmacro -%}
# Available variables:
# script_path_abs={{ script_path_abs }}
# - the absolute path to the generated submission script
# run_cmd={{ run_cmd }}
# - the complete command-line string to run the job
# num_cpu={{ num_cpu }}
# - the number of CPUs needed
# num_gpu={{ num_gpu }}
# - the number of GPUs needed. Note: the code will use this many GPUs
# starting from dev id 0. The cluster scheduler or this script have the
# responsibility of setting CUDA_VISIBLE_DEVICES so that the job code
# ends up using the correct cluster-allocated GPUs.
# ram_gb={{ ram_gb }}
# - the amount of RAM needed in GB
# job_dir_abs={{ job_dir_abs }}
# - absolute path to the job directory
# project_dir_abs={{ project_dir_abs }}
# - absolute path to the project dir
# job_log_path_abs={{ job_log_path_abs }}
# - absolute path to the log file for the job
# worker_bin_path={{ worker_bin_path }}
# - absolute path to the cryosparc worker command
# run_args={{ run_args }}
# - arguments to be passed to cryosparcw run
# project_uid={{ project_uid }}
# - uid of the project
# job_uid={{ job_uid }}
# - uid of the job
# job_creator={{ job_creator }}
# - name of the user that created the job (may contain spaces)
# cryosparc_username={{ cryosparc_username }}
# - cryosparc username of the user that created the job (usually an email)
#SBATCH --job-name=cryosparc_{{ project_uid }}_{{ job_uid }}
#SBATCH --output={{ job_log_path_abs }}.out
#SBATCH --error={{ job_log_path_abs }}.err
#SBATCH --ntasks=1
#SBATCH --threads-per-core=1
#SBATCH --mem-per-cpu={{ ((ram_gb*1000)/num_cpu)|int }}M
#SBATCH --time=0-01:00:00
{%- if num_gpu == 0 %}
# Use CPU cluster
#SBATCH --partition=general
#SBATCH --account=merlin
#SBATCH --cpus-per-task={{ num_cpu }}
{%- else %}
# Use GPU cluster
#SBATCH --partition=gpu-test
#SBATCH --account=merlin-gpu
#SBATCH --gres=gpu:GTX1080:{{ _min(num_gpu, 4) }}
{%- if num_gpu <= 2 %}
#SBATCH --cpus-per-task={{ _min(num_cpu, 8) }}
{%- else %}
{# Slurm requests too many CPU sometimes; restrict to 20 per machine #}
{%- set num_nodes = (num_gpu/4) | round(0, 'ceil') | int %}
#SBATCH --cpus-per-task={{ _min(num_cpu, 20*num_nodes) }}
{%- endif %}
{%- endif %}
# Print hostname, for debugging
hostname
# Make sure this matches the version of cuda used to compile cryosparc
module purge
module load cuda/10.0.130
srun {{ run_cmd }}