mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-27 20:11:09 +02:00
Merge branch 'main' of https://gitlab.psi.ch/apog/acsmnode
This commit is contained in:
@ -1,103 +1,103 @@
|
||||
# Define common factors
|
||||
|
||||
# Get values from data/<station>/<year>/config_acsm_<year>.r, values used in Tofware analysis.
|
||||
IE: &IE 145.9
|
||||
ABRefWave: &ABRefWave 254000
|
||||
RIE_SO4: &RIE_SO4 0.63
|
||||
RIE_NH4: &RIE_NH4 3.495
|
||||
RIE_Org: &RIE_Org 1.4
|
||||
|
||||
# Get values from data/<station>/<year>/cal.csv
|
||||
IE_correct: &IE_correct 145.9
|
||||
AB_ref_correct: &AB_ref_correct 254000
|
||||
RIE_SO4_correct: &RIE_SO4_correct 0.63
|
||||
RIE_NH4_correct: &RIE_NH4_correct 3.495
|
||||
RIE_Org_correct: &RIE_Org_correct 1.4
|
||||
flow_ref_correct: &flow_ref_correct 1.36
|
||||
|
||||
# Define mappings for associated variables
|
||||
variables:
|
||||
# all_dat[, NO3_correct := (NO3_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
NO3_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_correct := (SO4_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
SO4_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, NH4_correct := (NH4_11000 * IE * RIE_NH4 * AB_ref_correct) / (IE_correct * RIE_NH4_correct * ABRefWave)]
|
||||
NH4_11000:
|
||||
num: [*IE, *RIE_NH4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_NH4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_correct := (Org_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Chl_correct := (Chl_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Chl_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_44_11000_correct := (Org_44_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_44_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_43_11000_correct := (Org_43_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_43_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_60_11000_correct := (Org_60_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
|
||||
Org_60_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, NO3_30_11000_correct := (NO3_30_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
|
||||
NO3_30_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_98_11000_correct := (SO4_98_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_98_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_81_11000_correct := (SO4_81_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_81_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_82_11000_correct := (SO4_82_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_82_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_62_11000_correct := (SO4_62_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_62_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_48_11000_correct := (SO4_48_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_48_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Define common factors
|
||||
|
||||
# Get values from data/<station>/<year>/config_acsm_<year>.r, values used in Tofware analysis.
|
||||
IE: &IE 145.9
|
||||
ABRefWave: &ABRefWave 254000
|
||||
RIE_SO4: &RIE_SO4 0.63
|
||||
RIE_NH4: &RIE_NH4 3.495
|
||||
RIE_Org: &RIE_Org 1.4
|
||||
|
||||
# Get values from data/<station>/<year>/cal.csv
|
||||
IE_correct: &IE_correct 145.9
|
||||
AB_ref_correct: &AB_ref_correct 254000
|
||||
RIE_SO4_correct: &RIE_SO4_correct 0.63
|
||||
RIE_NH4_correct: &RIE_NH4_correct 3.495
|
||||
RIE_Org_correct: &RIE_Org_correct 1.4
|
||||
flow_ref_correct: &flow_ref_correct 1.36
|
||||
|
||||
# Define mappings for associated variables
|
||||
variables:
|
||||
# all_dat[, NO3_correct := (NO3_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
NO3_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_correct := (SO4_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
SO4_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, NH4_correct := (NH4_11000 * IE * RIE_NH4 * AB_ref_correct) / (IE_correct * RIE_NH4_correct * ABRefWave)]
|
||||
NH4_11000:
|
||||
num: [*IE, *RIE_NH4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_NH4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_correct := (Org_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Chl_correct := (Chl_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Chl_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_44_11000_correct := (Org_44_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_44_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_43_11000_correct := (Org_43_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
Org_43_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, Org_60_11000_correct := (Org_60_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
|
||||
Org_60_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, NO3_30_11000_correct := (NO3_30_11000 * IE * AB_ref_correct) / (IE_correct * ABRefWave)]
|
||||
|
||||
NO3_30_11000:
|
||||
num: [*IE, *AB_ref_correct]
|
||||
den: [*IE_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_98_11000_correct := (SO4_98_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_98_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_81_11000_correct := (SO4_81_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_81_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_82_11000_correct := (SO4_82_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_82_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_62_11000_correct := (SO4_62_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_62_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
# all_dat[, SO4_48_11000_correct := (SO4_48_11000 * IE * RIE_SO4 * AB_ref_correct) / (IE_correct * RIE_SO4_correct * ABRefWave)]
|
||||
|
||||
SO4_48_11000:
|
||||
num: [*IE, *RIE_SO4, *AB_ref_correct]
|
||||
den: [*IE_correct, *RIE_SO4_correct, *ABRefWave]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,18 +0,0 @@
|
||||
# Define limits for diagnostic variables (src: data/<station>/<year>/global_config.r)
|
||||
|
||||
VaporizerTemp_C :
|
||||
lower_lim : {value : 400, description : "heater"}
|
||||
upper_lim : {value : 610, description : "heater"}
|
||||
|
||||
ABsamp :
|
||||
lower_lim : {value : 20000, description : "not specified yet"}
|
||||
upper_lim : {value : 500000, description : "not specified yet"}
|
||||
|
||||
FlowRate_ccs :
|
||||
lower_lim : {value : 1.23, description : "not specified yet"}
|
||||
upper_lim : {value : 1.45, description : "not specified yet"}
|
||||
|
||||
FilamentEmission_mA :
|
||||
lower_lim : {value : 0.65, description : "not specified yet"}
|
||||
upper_lim : {value : 1.5, description : "not specified yet"}
|
||||
|
36
pipelines/params/limits_of_detection.yaml
Normal file
36
pipelines/params/limits_of_detection.yaml
Normal file
@ -0,0 +1,36 @@
|
||||
# Get values from data/<station>/<year>/config_acsm_2023.r
|
||||
|
||||
LOD :
|
||||
standard_name : "limit_of_detection"
|
||||
description : "Limit of detection for various variables, at different temporal resolutions"
|
||||
datetime : "2023-07-06"
|
||||
variables:
|
||||
NO3_11000 :
|
||||
resolution :
|
||||
40s : 0.21
|
||||
4m : 0.09
|
||||
1h : 0.02
|
||||
|
||||
SO4_11000:
|
||||
resolution :
|
||||
40s : 0.24
|
||||
4m : 0.10
|
||||
1h : 0.03
|
||||
|
||||
NH4_11000:
|
||||
resolution :
|
||||
40s : 0.98
|
||||
4m : 0.40
|
||||
1h : 0.1
|
||||
|
||||
Org_11000:
|
||||
resolution :
|
||||
40s : 0.12
|
||||
4m : 0.51
|
||||
1h : 0.13
|
||||
|
||||
Chl_11000:
|
||||
resolution :
|
||||
40s : 1.26
|
||||
4m : 0.05
|
||||
1h : 0.01
|
22
pipelines/params/operational_variable_ranges.yaml
Normal file
22
pipelines/params/operational_variable_ranges.yaml
Normal file
@ -0,0 +1,22 @@
|
||||
# Get values from data/<station>/<year>/global_config.r
|
||||
# Define operational ranges for diagnostic variables
|
||||
operational_range:
|
||||
description : "Defines the value range of a particular variable"
|
||||
variables:
|
||||
VaporizerTemp_C :
|
||||
lower_lim : 400
|
||||
upper_lim : 610
|
||||
description : "heater temperature"
|
||||
|
||||
ABsamp :
|
||||
lower_lim : 20000
|
||||
upper_lim : 500000
|
||||
|
||||
FlowRate_ccs :
|
||||
lower_lim : 1.23
|
||||
upper_lim : 1.45
|
||||
|
||||
FilamentEmission_mA :
|
||||
lower_lim : 0.65
|
||||
upper_lim : 1.5
|
||||
|
@ -1,179 +1,179 @@
|
||||
|
||||
import sys, os
|
||||
|
||||
try:
|
||||
thisFilePath = os.path.abspath(__file__)
|
||||
print(thisFilePath)
|
||||
except NameError:
|
||||
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
|
||||
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
|
||||
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
|
||||
thisFilePath = os.getcwd() # Use current directory or specify a default
|
||||
|
||||
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
|
||||
projectPath = os.path.normpath(os.path.join(dimaPath,'..'))
|
||||
print(dimaPath)
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from math import prod # To replace multiplyall
|
||||
import argparse
|
||||
import yaml
|
||||
|
||||
# Set up project root directory
|
||||
#root_dir = os.path.abspath(os.curdir)
|
||||
#sys.path.append(root_dir)
|
||||
sys.path.append(dimaPath)
|
||||
|
||||
import dima.src.hdf5_ops as dataOps
|
||||
|
||||
|
||||
|
||||
def apply_calibration_factors(data_table, calibration_factors):
|
||||
"""
|
||||
Calibrates the species data in the given data table using a calibration factor.
|
||||
|
||||
Parameters:
|
||||
data_table (pd.DataFrame): The input data table with variables to calibrate.
|
||||
calibration_factor (dict): Dictionary containing 'standard' calibration factors
|
||||
with 'num' and 'den' values as dictionaries of multipliers.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: A new data table with calibrated variables.
|
||||
"""
|
||||
# Make a copy of the input table to avoid modifying the original
|
||||
new_data_table = data_table.copy()
|
||||
|
||||
# Initialize a dictionary to rename variables
|
||||
variable_rename_dict = {}
|
||||
|
||||
# Loop through the column names in the data table
|
||||
for variable_name in new_data_table.select_dtypes(include=["number"]).columns:
|
||||
|
||||
if variable_name in calibration_factors['variables'].keys(): # use standard calibration factor
|
||||
|
||||
#print(variable_name)
|
||||
# Extract numerator and denominator values
|
||||
numerator = prod(calibration_factors['variables'][variable_name]['num'])
|
||||
denominator = prod(calibration_factors['variables'][variable_name]['den'])
|
||||
|
||||
# Apply calibration to each variable
|
||||
new_data_table[variable_name] = new_data_table[variable_name].mul((numerator / denominator))
|
||||
|
||||
# Add renaming entry
|
||||
variable_rename_dict[variable_name] = f"{variable_name}_correct"
|
||||
|
||||
else: # use specifies dependent calibration factor
|
||||
print(f'There is no calibration factors for variable {variable_name}. The variable will remain the same.')
|
||||
|
||||
|
||||
|
||||
# Rename the columns in the new data table
|
||||
new_data_table.rename(columns=variable_rename_dict, inplace=True)
|
||||
|
||||
return new_data_table
|
||||
|
||||
def record_data_lineage(path_to_output_file, metadata):
|
||||
|
||||
path_to_output_dir, output_file = os.path.split(path_to_output_file)
|
||||
|
||||
path_to_metadata_file = '/'.join([path_to_output_dir,'data_lineage_metadata.json'])
|
||||
# Ensure the file exists
|
||||
if not os.path.exists(path_to_metadata_file):
|
||||
with open(path_to_metadata_file, 'w') as f:
|
||||
json.dump({}, f) # Initialize empty JSON
|
||||
|
||||
# Read the existing JSON
|
||||
with open(path_to_metadata_file, 'r') as metadata_file:
|
||||
try:
|
||||
json_dict = json.load(metadata_file)
|
||||
except json.JSONDecodeError:
|
||||
json_dict = {} # Start fresh if file is invalid
|
||||
|
||||
# Compute relative output file path and update the JSON object
|
||||
relpath_to_output_file = os.path.relpath(path_to_output_file, start=projectPath).replace(os.sep, '/')
|
||||
json_dict[relpath_to_output_file] = metadata
|
||||
|
||||
# Write updated JSON back to the file
|
||||
with open(path_to_metadata_file, 'w') as metadata_file:
|
||||
json.dump(json_dict, metadata_file, indent=4)
|
||||
|
||||
|
||||
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
|
||||
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Set up argument parsing
|
||||
parser = argparse.ArgumentParser(description="Calibrate species data using calibration factors.")
|
||||
parser.add_argument('data_file', type=str, help="Path to the input HDF5 file containing the data table.")
|
||||
parser.add_argument('dataset_name', type=str, help ='Relative path to data_table (i.e., dataset name) in HDF5 file')
|
||||
parser.add_argument('calibration_file', type=str, help="Path to the input YAML file containing calibration factors.")
|
||||
parser.add_argument('output_file', type=str, help="Path to save the output calibrated data as a CSV file.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load input data and calibration factors
|
||||
try:
|
||||
#data_table = pd.read_json(args.data_file)
|
||||
|
||||
print(args.data_file)
|
||||
|
||||
dataManager = dataOps.HDF5DataOpsManager(args.data_file)
|
||||
dataManager.load_file_obj()
|
||||
dataset_name = '/'+args.dataset_name
|
||||
data_table = dataManager.extract_dataset_as_dataframe('/'+args.dataset_name)
|
||||
|
||||
dataManager.extract_and_load_dataset_metadata()
|
||||
dataset_metadata_df = dataManager.dataset_metadata_df.copy()
|
||||
print(dataset_metadata_df.head())
|
||||
|
||||
dataset_name_idx = dataset_metadata_df.index[(dataset_metadata_df['dataset_name']==args.dataset_name).to_numpy()]
|
||||
data_table_metadata = dataset_metadata_df.loc[dataset_name_idx,:]
|
||||
parent_instrument = data_table_metadata.loc[dataset_name_idx,'parent_instrument'].values[0]
|
||||
parent_file = data_table_metadata.loc[dataset_name_idx,'parent_file'].values[0]
|
||||
|
||||
dataManager.unload_file_obj()
|
||||
print(args.calibration_file)
|
||||
|
||||
with open(args.calibration_file, 'r') as stream:
|
||||
calibration_factors = yaml.load(stream, Loader=yaml.FullLoader)
|
||||
except Exception as e:
|
||||
print(f"Error loading input files: {e}")
|
||||
exit(1)
|
||||
|
||||
path_to_output_dir, ext = os.path.splitext(args.data_file)
|
||||
|
||||
print('Path to output directory :', path_to_output_dir)
|
||||
|
||||
|
||||
|
||||
# Perform calibration
|
||||
try:
|
||||
|
||||
processingScriptRelPath = os.path.relpath(thisFilePath,start=projectPath)
|
||||
|
||||
print(processingScriptRelPath)
|
||||
|
||||
metadata = {'actris_level' : 1, 'processing_script': processingScriptRelPath.replace(os.sep,'/')}
|
||||
|
||||
path_to_output_file, ext = os.path.splitext('/'.join([path_to_output_dir,parent_instrument,parent_file]))
|
||||
path_to_calibrated_file = ''.join([path_to_output_file, '_calibrated.csv'])
|
||||
|
||||
#path_tail, path_head = os.path.split(path_to_calibrated_file)
|
||||
#path_to_metadata_file = '/'.join([path_tail, 'data_lineage_metadata.json'])
|
||||
|
||||
print('Path to output file :', path_to_calibrated_file)
|
||||
import dima.utils.g5505_utils as utils
|
||||
import json
|
||||
calibrated_table = apply_calibration_factors(data_table, calibration_factors)
|
||||
metadata['processing_date'] = utils.created_at()
|
||||
calibrated_table.to_csv(path_to_calibrated_file, index=False)
|
||||
|
||||
status = record_data_lineage(path_to_calibrated_file, metadata)
|
||||
|
||||
|
||||
print(f"Calibrated data saved to {path_to_calibrated_file}")
|
||||
except Exception as e:
|
||||
print(f"Error during calibration: {e}")
|
||||
|
||||
import sys, os
|
||||
|
||||
try:
|
||||
thisFilePath = os.path.abspath(__file__)
|
||||
print(thisFilePath)
|
||||
except NameError:
|
||||
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
|
||||
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
|
||||
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
|
||||
thisFilePath = os.getcwd() # Use current directory or specify a default
|
||||
|
||||
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
|
||||
projectPath = os.path.normpath(os.path.join(dimaPath,'..'))
|
||||
print(dimaPath)
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from math import prod # To replace multiplyall
|
||||
import argparse
|
||||
import yaml
|
||||
|
||||
# Set up project root directory
|
||||
#root_dir = os.path.abspath(os.curdir)
|
||||
#sys.path.append(root_dir)
|
||||
sys.path.append(dimaPath)
|
||||
|
||||
import dima.src.hdf5_ops as dataOps
|
||||
|
||||
|
||||
|
||||
def apply_calibration_factors(data_table, calibration_factors):
|
||||
"""
|
||||
Calibrates the species data in the given data table using a calibration factor.
|
||||
|
||||
Parameters:
|
||||
data_table (pd.DataFrame): The input data table with variables to calibrate.
|
||||
calibration_factor (dict): Dictionary containing 'standard' calibration factors
|
||||
with 'num' and 'den' values as dictionaries of multipliers.
|
||||
|
||||
Returns:
|
||||
pd.DataFrame: A new data table with calibrated variables.
|
||||
"""
|
||||
# Make a copy of the input table to avoid modifying the original
|
||||
new_data_table = data_table.copy()
|
||||
|
||||
# Initialize a dictionary to rename variables
|
||||
variable_rename_dict = {}
|
||||
|
||||
# Loop through the column names in the data table
|
||||
for variable_name in new_data_table.select_dtypes(include=["number"]).columns:
|
||||
|
||||
if variable_name in calibration_factors['variables'].keys(): # use standard calibration factor
|
||||
|
||||
#print(variable_name)
|
||||
# Extract numerator and denominator values
|
||||
numerator = prod(calibration_factors['variables'][variable_name]['num'])
|
||||
denominator = prod(calibration_factors['variables'][variable_name]['den'])
|
||||
|
||||
# Apply calibration to each variable
|
||||
new_data_table[variable_name] = new_data_table[variable_name].mul((numerator / denominator))
|
||||
|
||||
# Add renaming entry
|
||||
variable_rename_dict[variable_name] = f"{variable_name}_correct"
|
||||
|
||||
else: # use specifies dependent calibration factor
|
||||
print(f'There is no calibration factors for variable {variable_name}. The variable will remain the same.')
|
||||
|
||||
|
||||
|
||||
# Rename the columns in the new data table
|
||||
new_data_table.rename(columns=variable_rename_dict, inplace=True)
|
||||
|
||||
return new_data_table
|
||||
|
||||
def record_data_lineage(path_to_output_file, metadata):
|
||||
|
||||
path_to_output_dir, output_file = os.path.split(path_to_output_file)
|
||||
|
||||
path_to_metadata_file = '/'.join([path_to_output_dir,'data_lineage_metadata.json'])
|
||||
# Ensure the file exists
|
||||
if not os.path.exists(path_to_metadata_file):
|
||||
with open(path_to_metadata_file, 'w') as f:
|
||||
json.dump({}, f) # Initialize empty JSON
|
||||
|
||||
# Read the existing JSON
|
||||
with open(path_to_metadata_file, 'r') as metadata_file:
|
||||
try:
|
||||
json_dict = json.load(metadata_file)
|
||||
except json.JSONDecodeError:
|
||||
json_dict = {} # Start fresh if file is invalid
|
||||
|
||||
# Compute relative output file path and update the JSON object
|
||||
relpath_to_output_file = os.path.relpath(path_to_output_file, start=projectPath).replace(os.sep, '/')
|
||||
json_dict[relpath_to_output_file] = metadata
|
||||
|
||||
# Write updated JSON back to the file
|
||||
with open(path_to_metadata_file, 'w') as metadata_file:
|
||||
json.dump(json_dict, metadata_file, indent=4)
|
||||
|
||||
|
||||
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
|
||||
|
||||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Set up argument parsing
|
||||
parser = argparse.ArgumentParser(description="Calibrate species data using calibration factors.")
|
||||
parser.add_argument('data_file', type=str, help="Path to the input HDF5 file containing the data table.")
|
||||
parser.add_argument('dataset_name', type=str, help ='Relative path to data_table (i.e., dataset name) in HDF5 file')
|
||||
parser.add_argument('calibration_file', type=str, help="Path to the input YAML file containing calibration factors.")
|
||||
parser.add_argument('output_file', type=str, help="Path to save the output calibrated data as a CSV file.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load input data and calibration factors
|
||||
try:
|
||||
#data_table = pd.read_json(args.data_file)
|
||||
|
||||
print(args.data_file)
|
||||
|
||||
dataManager = dataOps.HDF5DataOpsManager(args.data_file)
|
||||
dataManager.load_file_obj()
|
||||
dataset_name = '/'+args.dataset_name
|
||||
data_table = dataManager.extract_dataset_as_dataframe('/'+args.dataset_name)
|
||||
|
||||
dataManager.extract_and_load_dataset_metadata()
|
||||
dataset_metadata_df = dataManager.dataset_metadata_df.copy()
|
||||
print(dataset_metadata_df.head())
|
||||
|
||||
dataset_name_idx = dataset_metadata_df.index[(dataset_metadata_df['dataset_name']==args.dataset_name).to_numpy()]
|
||||
data_table_metadata = dataset_metadata_df.loc[dataset_name_idx,:]
|
||||
parent_instrument = data_table_metadata.loc[dataset_name_idx,'parent_instrument'].values[0]
|
||||
parent_file = data_table_metadata.loc[dataset_name_idx,'parent_file'].values[0]
|
||||
|
||||
dataManager.unload_file_obj()
|
||||
print(args.calibration_file)
|
||||
|
||||
with open(args.calibration_file, 'r') as stream:
|
||||
calibration_factors = yaml.load(stream, Loader=yaml.FullLoader)
|
||||
except Exception as e:
|
||||
print(f"Error loading input files: {e}")
|
||||
exit(1)
|
||||
|
||||
path_to_output_dir, ext = os.path.splitext(args.data_file)
|
||||
|
||||
print('Path to output directory :', path_to_output_dir)
|
||||
|
||||
|
||||
|
||||
# Perform calibration
|
||||
try:
|
||||
|
||||
processingScriptRelPath = os.path.relpath(thisFilePath,start=projectPath)
|
||||
|
||||
print(processingScriptRelPath)
|
||||
|
||||
metadata = {'actris_level' : 1, 'processing_script': processingScriptRelPath.replace(os.sep,'/')}
|
||||
|
||||
path_to_output_file, ext = os.path.splitext('/'.join([path_to_output_dir,parent_instrument,parent_file]))
|
||||
path_to_calibrated_file = ''.join([path_to_output_file, '_calibrated.csv'])
|
||||
|
||||
#path_tail, path_head = os.path.split(path_to_calibrated_file)
|
||||
#path_to_metadata_file = '/'.join([path_tail, 'data_lineage_metadata.json'])
|
||||
|
||||
print('Path to output file :', path_to_calibrated_file)
|
||||
import dima.utils.g5505_utils as utils
|
||||
import json
|
||||
calibrated_table = apply_calibration_factors(data_table, calibration_factors)
|
||||
metadata['processing_date'] = utils.created_at()
|
||||
calibrated_table.to_csv(path_to_calibrated_file, index=False)
|
||||
|
||||
status = record_data_lineage(path_to_calibrated_file, metadata)
|
||||
|
||||
|
||||
print(f"Calibrated data saved to {path_to_calibrated_file}")
|
||||
except Exception as e:
|
||||
print(f"Error during calibration: {e}")
|
||||
exit(1)
|
Reference in New Issue
Block a user