Fix duplicate time stamp problems and added code to check for NaTs before ebas submission files.)

This commit is contained in:
2025-03-04 09:02:37 +01:00
parent 9a23744f63
commit f035afbf3b
3 changed files with 75 additions and 35 deletions

View File

@ -267,7 +267,15 @@ if __name__ == '__main__':
print('Path to output directory :', path_to_output_dir)
# Count the number of NaT (null) values
num_nats = data_table[datetime_var].isna().sum()
# Get the total number of rows
total_rows = len(data_table)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.4f}%")
# Perform calibration

View File

@ -251,7 +251,7 @@ with open('app/flags/ebas_dict.yaml','r') as stream:
# Vectorized function for getting the rank of a flag
def get_rank(flag):
return flag_ranking.get(flag, 0) # Default rank 0 for unknown flags
return flag_ranking.get(flag, np.nan) # Default rank 0 for unknown flags
# Vectorized function for reconciling flags
def reconcile_flags(data_table, flag_code, t1_idx, t2_idx, numflag_columns):
@ -280,7 +280,7 @@ def reconcile_flags(data_table, flag_code, t1_idx, t2_idx, numflag_columns):
if __name__ == '__main__':
# Set up argument parsing
parser = argparse.ArgumentParser(description="Calibrate species data using calibration factors.")
parser = argparse.ArgumentParser(description="Generate flags for diagnostics and species variables.")
parser.add_argument(
"--flag-type",
@ -343,14 +343,15 @@ if __name__ == '__main__':
data_table = dataManager.extract_dataset_as_dataframe(dataset_name)
datetime_var, datetime_var_format = dataManager.infer_datetime_variable(dataset_name)
#dataManager.extract_and_load_dataset_metadata()
#dataset_metadata_df = dataManager.dataset_metadata_df.copy()
#print(dataset_metadata_df.head())
#dataset_name_idx = dataset_metadata_df.index[(dataset_metadata_df['dataset_name']==args.dataset_name).to_numpy()]
#data_table_metadata = dataset_metadata_df.loc[dataset_name_idx,:]
#parent_instrument = data_table_metadata.loc[dataset_name_idx,'parent_instrument'].values[0]
#parent_file = data_table_metadata.loc[dataset_name_idx,'parent_file'].values[0]
# Count the number of NaT (null) values
num_nats = data_table[datetime_var].isna().sum()
# Get the total number of rows
total_rows = len(data_table)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.4f}%")
dataManager.unload_file_obj()

View File

@ -39,7 +39,8 @@ def join_tables(csv_files: list):
raise RuntimeError("Parameter csv_files contains either an unreachable/broken path or a non-CSV file.")
acum_df = pd.read_csv(csv_files[0])
left_datetime_var = get_metadata(csv_files[0]).get('datetime_var', None)
left_datetime_var = get_metadata(csv_files[0]).get('datetime_var', None)
acum_df = acum_df.drop_duplicates(subset=[left_datetime_var])
if left_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[0]}")
@ -51,7 +52,8 @@ def join_tables(csv_files: list):
if right_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[idx]}")
acum_df = acum_df.merge(append_df, left_on=left_datetime_var, right_on=right_datetime_var, how='inner')
append_df = append_df.drop_duplicates(subset=[right_datetime_var])
acum_df = acum_df.merge(append_df, left_on=left_datetime_var, right_on=right_datetime_var, how='left')
return acum_df
@ -87,36 +89,21 @@ if __name__ == "__main__":
#print("Renaming map keys:", acsm_to_ebas['renaming_map'].keys())
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
reduced_set_of_vars = [key for key in acum_df.columns if 'factor' not in key]
print(reduced_set_of_vars)
acum_df.loc[:,reduced_set_of_vars].to_csv('data/JFJ_ACSM-017_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
#print(reduced_set_of_vars)
flags_acum_df = join_tables([path3])
flags_acum_df = flags_acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Count the number of NaT (null) values
num_nats = acum_df['ACSM_time'].isna().sum()
# Get the total number of rows
total_rows = len(acum_df)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
acum_df = join_tables([path3])
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Ensure time columns are datetime
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
flags_acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
# Count the number of NaT (null) values
num_nats = acum_df['ACSM_time'].isna().sum()
# Get the total number of rows
total_rows = len(acum_df)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
@ -124,4 +111,48 @@ if __name__ == "__main__":
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
acum_df.to_csv('data/JFJ_ACSM-017_FLAGS_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
# Count the number of NaT (null) values
num_nats = flags_acum_df['ACSM_time'].isna().sum()
# Get the total number of rows
total_rows = len(flags_acum_df)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
nat_acum = acum_df['ACSM_time'].isna()
nat_flags = flags_acum_df['ACSM_time'].isna()
valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
acum_df.loc[valid_rows.to_numpy(),reduced_set_of_vars].to_csv('data/JFJ_ACSM-017_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
flags_acum_df.loc[valid_rows.to_numpy(),:].to_csv('data/JFJ_ACSM-017_FLAGS_2024.txt',sep='\t',index=None, date_format="%Y/%m/%d %H:%M:%S")
#acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
#flags_acum_df['ACSM_time'] = pd.to_datetime(flags_acum_df['ACSM_time'])
# Set datetime as index
#acum_df.set_index('ACSM_time', inplace=True)
#flags_acum_df.set_index('ACSM_time', inplace=True)
#nat_acum = acum_df['ACSM_time'].isna()
#nat_flags = flags_acum_df['ACSM_time'].isna()
#valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
#acum_df_filtered = acum_df.loc[valid_rows.to_numpy(),:]
#flags_acum_df_filtered = flags_acum_df[valid_rows.to_numpy(),:]
# Step 4: Apply the valid mask to both dataframes
#acum_df_filtered = acum_df[valid_rows]
#flags_acum_df_filtered = flags_acum_df[valid_rows]
# Display results
#print(acum_df_filtered)
#print(flags_acum_df_filtered)