Clean up print statements.

This commit is contained in:
2025-03-14 13:39:12 +01:00
parent 39a9ab07a2
commit 7d277e3e3b

View File

@ -16,8 +16,8 @@ import argparse
import yaml, json
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
#print('Project path:', projectPath)
dimaPath = os.path.normpath('/'.join([projectPath,'dima']))
#print('Project path:', projectPath)
#print('DIMA path:', dimaPath)
@ -71,10 +71,10 @@ def generate_diagnostic_flags(data_table, validity_thresholds_dict):
# Loop through the column names in the data table
for diagnostic_variable in data_table.columns:
print(diagnostic_variable)
#print(diagnostic_variable)
# Skip if the diagnostic variable is not in variable_limits
if diagnostic_variable not in validity_thresholds_dict['validity_thresholds']['variables']:
print(f'Diagnostic variable {diagnostic_variable} has not defined limits in {validity_thresholds_dict}.')
print(f'Unspecified validity thresholds for variable {diagnostic_variable}. If needed, update pipelines/params/validity_thresholds.yaml accordingly.')
continue
# Get lower and upper limits for diagnostic_variable from variable limits dict
@ -113,21 +113,15 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f
"""
print('Retreiving species to be flagged ...')
predefined_species = calib_param_dict.get('variables',{}).get('species',[])
print(f'Species to be flagged are: {predefined_species}. If needed, update pipelines/params/calibration_params.yaml')
if not predefined_species:
raise RuntimeError("Undefined species. Input argument 'calib_param_dict' must contain a 'variables' : {'species' : ['example1',...,'examplen']} ")
print('Predefined_species:', predefined_species)
variables_set = set(data_table.columns)
print(variables_set)
manual_json_flags, csv_flags = get_flags_from_folder(flagsFolderPath)
print(manual_json_flags,csv_flags)
#print(manual_json_flags,csv_flags)
if csv_flags:
flags_table = pd.read_csv(os.path.join(flagsFolderPath, csv_flags[0]))
@ -145,7 +139,7 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f
flags_table['numflag_any_diagnostic_flag'].values[:, None],
(1, len(variables))
)
print(renaming_map)
#print(renaming_map)
data_table.rename(columns=renaming_map, inplace=True)
else:
raise FileNotFoundError("Automated diagnostic flag .csv not found. Hint: Run pipelines/step/generate_flags.py <campaignFile.h5> --flag-type diagnostics.")
@ -153,7 +147,7 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f
numflag_columns = [col for col in data_table.columns if 'numflag_' in col]
print(numflag_columns)
#print(numflag_columns)
for flag_filename in manual_json_flags:
#print(flag_filename)
parts = os.path.splitext(flag_filename)[0].split('_')
@ -194,8 +188,8 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f
return data_table.loc[:,[datetime_var] + numflag_columns]
with open('app/flags/ebas_dict.yaml','r') as stream:
path_to_ebas_dict = os.path.normpath(os.path.join(projectPath,'app/flags/ebas_dict.yaml'))
with open(path_to_ebas_dict ,'r') as stream:
ebas_dict = yaml.safe_load(stream)
flag_ranking = ebas_dict['flag_ranking']
@ -231,7 +225,7 @@ def reconcile_flags(data_table, flag_code, t1_idx, t2_idx, numflag_columns):
def main(data_file, flag_type):
# Open data file and load dataset associated with flag_type : either diagnostics or species
try:
dataManager = dataOps.HDF5DataOpsManager(args.data_file)
dataManager = dataOps.HDF5DataOpsManager(data_file)
dataManager.load_file_obj()
base_name = '/ACSM_TOFWARE'
@ -339,7 +333,7 @@ def main(data_file, flag_type):
status = stepUtils.record_data_lineage(path_to_flags_file, projectPath, metadata)
print(f"Flags saved to {path_to_flags_file}")
print(f"Data lineage saved to {path_to_output_dir}")
print(f"Data lineage saved to {path_to_output_folder}")
#flags_table.to_csv(path_to_flags_file, index=False)