Add functions: generate_error_dataframe() with missing values, metadata_dict_to_dataframe(), and load_project_yaml_files() to easily access data from yaml files in the project.

This commit is contained in:
2025-03-07 16:45:33 +01:00
parent 93f49f7fd1
commit 78340464aa

View File

@ -1,6 +1,7 @@
import os
import json
import json, yaml
import numpy as np
import pandas as pd
def record_data_lineage(path_to_output_file, projectPath, metadata):
@ -47,4 +48,129 @@ def get_metadata(path_to_file):
metadata = metadata.get(filename,{})
return metadata
return metadata
def generate_missing_value_code(max_val, num_decimals):
"""
Generates a missing value code consisting of all 9s.
- `max_val`: Largest expected valid value in the column.
- `num_decimals`: Number of decimal places to preserve.
"""
# Determine order of magnitude (1-2 orders larger than max value)
order = int(np.floor(np.log10(max_val))) + 2 if max_val > 0 else 2
# Construct the missing value code as all 9s
if num_decimals > 0:
missing_code = float(f"{'9' * (order + num_decimals)}.{ '9' * num_decimals }")
else:
missing_code = int('9' * order)
return missing_code
def generate_error_dataframe(df: pd.DataFrame, datetime_var):
"""
Generates an error DataFrame by filling numeric 'correct' columns with a missing value code.
Parameters
----------
df : pd.DataFrame
Input DataFrame containing numerical columns.
datetime_var : str
Name of the datetime column to retain.
Returns
-------
pd.DataFrame
DataFrame with error values based on missing value codes.
"""
df_numeric = df.select_dtypes(include=np.number)
err_df_columns = []
err_df_values = []
# Correct way to filter columns containing 'correct'
correct_cols = [col for col in df_numeric.columns if 'correct' in col]
for col in correct_cols:
missing_value_code = generate_missing_value_code(df[col].max(skipna=True), 4)
err_df_values.append(missing_value_code)
err_df_columns.append(f"{col}_err")
# Fix np.matmul usage and reshape err_df_values correctly
err_matrix = np.tile(np.array(err_df_values), (len(df),1)) # np.ones((len(df), len(err_df_values))) * np.array(err_df_values)
df_err = pd.DataFrame(data=err_matrix, columns=err_df_columns)
# Ensure datetime_var exists in df before assignment
if datetime_var in df.columns:
df_err[datetime_var] = df[datetime_var].values
else:
raise ValueError(f"Column '{datetime_var}' not found in DataFrame")
return df_err
import numpy as np
import pandas as pd
def metadata_dict_to_dataframe(metadata: dict, shape: tuple):
"""
Converts a metadata dictionary into a repeated data table.
Parameters
----------
metadata : dict
Dictionary containing metadata where keys are column names and values are repeated across rows.
shape : tuple
Shape of the output DataFrame (rows, columns). The number of columns must match the length of `metadata`.
Returns
-------
pd.DataFrame
DataFrame with metadata values repeated according to the specified shape.
"""
# Ensure shape is valid (rows, columns)
rows, cols = shape
if cols != len(metadata):
raise ValueError(f"Shape mismatch: {cols} columns expected, but metadata has {len(metadata)} keys.")
# Extract metadata values and reshape them properly
values = np.array(list(metadata.values())).reshape((1,cols))
# Tile the values to match the desired shape
data_table = np.tile(values, (rows, 1))
# Create DataFrame with correct column names
df = pd.DataFrame(data=data_table, columns=list(metadata.keys()))
return df
def load_project_yaml_files(projectPath : str, filename : str):
allowed_filenames = ['acsm_to_ebas.yaml', 'calibration_params.yaml', 'limits_of_detection.yaml', 'station_params.yaml', 'validity_thresholds.yaml']
if not filename in allowed_filenames:
raise ValueError(f'Invalid filename : {filename}. The filename should be selected from the following list {allowed_filenames}.')
filename_to_relpath = {"acsm_to_ebas.yaml":"pipelines/dictionaries/acsm_to_ebas.yaml",
"calibration_params.yaml":"pipelines/params/calibration_params.yaml",
"limits_of_detection.yaml":"pipelines/params/limits_of_detection.yaml",
"station_params.yaml":"pipelines/params/station_params.yaml",
"validity_thresholds.yaml":"pipelines/params/validity_thresholds.yaml"}
# Implicit input
if filename_to_relpath.get(filename,None):
dict_file = os.path.normpath(os.path.join(projectPath,filename_to_relpath[filename]))
output_dict = {}
try:
with open(dict_file, 'r') as stream:
output_dict = yaml.load(stream, Loader=yaml.FullLoader)
except Exception as e:
print(f'Error loading {dict_file}: {e}')
return {}
return output_dict