mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-24 21:21:08 +02:00
Add functions: generate_error_dataframe() with missing values, metadata_dict_to_dataframe(), and load_project_yaml_files() to easily access data from yaml files in the project.
This commit is contained in:
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import json
|
||||
|
||||
import json, yaml
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
def record_data_lineage(path_to_output_file, projectPath, metadata):
|
||||
|
||||
@ -47,4 +48,129 @@ def get_metadata(path_to_file):
|
||||
|
||||
metadata = metadata.get(filename,{})
|
||||
|
||||
return metadata
|
||||
return metadata
|
||||
|
||||
def generate_missing_value_code(max_val, num_decimals):
|
||||
"""
|
||||
Generates a missing value code consisting of all 9s.
|
||||
- `max_val`: Largest expected valid value in the column.
|
||||
- `num_decimals`: Number of decimal places to preserve.
|
||||
"""
|
||||
# Determine order of magnitude (1-2 orders larger than max value)
|
||||
order = int(np.floor(np.log10(max_val))) + 2 if max_val > 0 else 2
|
||||
|
||||
# Construct the missing value code as all 9s
|
||||
if num_decimals > 0:
|
||||
missing_code = float(f"{'9' * (order + num_decimals)}.{ '9' * num_decimals }")
|
||||
else:
|
||||
missing_code = int('9' * order)
|
||||
|
||||
return missing_code
|
||||
|
||||
|
||||
def generate_error_dataframe(df: pd.DataFrame, datetime_var):
|
||||
"""
|
||||
Generates an error DataFrame by filling numeric 'correct' columns with a missing value code.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
df : pd.DataFrame
|
||||
Input DataFrame containing numerical columns.
|
||||
datetime_var : str
|
||||
Name of the datetime column to retain.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame
|
||||
DataFrame with error values based on missing value codes.
|
||||
"""
|
||||
df_numeric = df.select_dtypes(include=np.number)
|
||||
|
||||
err_df_columns = []
|
||||
err_df_values = []
|
||||
|
||||
# Correct way to filter columns containing 'correct'
|
||||
correct_cols = [col for col in df_numeric.columns if 'correct' in col]
|
||||
|
||||
for col in correct_cols:
|
||||
missing_value_code = generate_missing_value_code(df[col].max(skipna=True), 4)
|
||||
err_df_values.append(missing_value_code)
|
||||
err_df_columns.append(f"{col}_err")
|
||||
|
||||
# Fix np.matmul usage and reshape err_df_values correctly
|
||||
err_matrix = np.tile(np.array(err_df_values), (len(df),1)) # np.ones((len(df), len(err_df_values))) * np.array(err_df_values)
|
||||
|
||||
df_err = pd.DataFrame(data=err_matrix, columns=err_df_columns)
|
||||
|
||||
# Ensure datetime_var exists in df before assignment
|
||||
if datetime_var in df.columns:
|
||||
df_err[datetime_var] = df[datetime_var].values
|
||||
else:
|
||||
raise ValueError(f"Column '{datetime_var}' not found in DataFrame")
|
||||
|
||||
return df_err
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
def metadata_dict_to_dataframe(metadata: dict, shape: tuple):
|
||||
"""
|
||||
Converts a metadata dictionary into a repeated data table.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
metadata : dict
|
||||
Dictionary containing metadata where keys are column names and values are repeated across rows.
|
||||
shape : tuple
|
||||
Shape of the output DataFrame (rows, columns). The number of columns must match the length of `metadata`.
|
||||
|
||||
Returns
|
||||
-------
|
||||
pd.DataFrame
|
||||
DataFrame with metadata values repeated according to the specified shape.
|
||||
"""
|
||||
# Ensure shape is valid (rows, columns)
|
||||
rows, cols = shape
|
||||
|
||||
if cols != len(metadata):
|
||||
raise ValueError(f"Shape mismatch: {cols} columns expected, but metadata has {len(metadata)} keys.")
|
||||
|
||||
# Extract metadata values and reshape them properly
|
||||
values = np.array(list(metadata.values())).reshape((1,cols))
|
||||
|
||||
# Tile the values to match the desired shape
|
||||
data_table = np.tile(values, (rows, 1))
|
||||
|
||||
# Create DataFrame with correct column names
|
||||
df = pd.DataFrame(data=data_table, columns=list(metadata.keys()))
|
||||
|
||||
return df
|
||||
|
||||
|
||||
def load_project_yaml_files(projectPath : str, filename : str):
|
||||
|
||||
allowed_filenames = ['acsm_to_ebas.yaml', 'calibration_params.yaml', 'limits_of_detection.yaml', 'station_params.yaml', 'validity_thresholds.yaml']
|
||||
|
||||
if not filename in allowed_filenames:
|
||||
raise ValueError(f'Invalid filename : {filename}. The filename should be selected from the following list {allowed_filenames}.')
|
||||
|
||||
filename_to_relpath = {"acsm_to_ebas.yaml":"pipelines/dictionaries/acsm_to_ebas.yaml",
|
||||
"calibration_params.yaml":"pipelines/params/calibration_params.yaml",
|
||||
"limits_of_detection.yaml":"pipelines/params/limits_of_detection.yaml",
|
||||
"station_params.yaml":"pipelines/params/station_params.yaml",
|
||||
"validity_thresholds.yaml":"pipelines/params/validity_thresholds.yaml"}
|
||||
|
||||
# Implicit input
|
||||
if filename_to_relpath.get(filename,None):
|
||||
dict_file = os.path.normpath(os.path.join(projectPath,filename_to_relpath[filename]))
|
||||
|
||||
output_dict = {}
|
||||
try:
|
||||
with open(dict_file, 'r') as stream:
|
||||
output_dict = yaml.load(stream, Loader=yaml.FullLoader)
|
||||
except Exception as e:
|
||||
|
||||
print(f'Error loading {dict_file}: {e}')
|
||||
return {}
|
||||
|
||||
return output_dict
|
Reference in New Issue
Block a user