Move app scripts to app folder. This is to improve modularity of the app

This commit is contained in:
2025-02-13 18:03:41 +01:00
parent 1a86dc2065
commit 479c11d0d4
2 changed files with 0 additions and 0 deletions

808
app/data_flagging_app.py Normal file
View File

@ -0,0 +1,808 @@
import sys, os
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..",'..')) # Move up to project root
print(dimaPath)
import pandas as pd
import numpy as np
import base64
import dash
import io
# Set up project root directory
root_dir = os.path.abspath(os.curdir)
sys.path.append(root_dir)
sys.path.append(os.path.join(root_dir,'dima'))
import data_flagging_utils as data_flagging_utils
from dash import Dash, html, dcc, callback, Output, Input, State, dash_table
import plotly.graph_objs as go
from plotly.subplots import make_subplots
import dash_bootstrap_components as dbc
import json
import dima.src.hdf5_ops as hdf5_ops
#import dima.instruments.readers.filereader_registry as filereader_registry
#import instruments_.readers.flag_reader as flag_reader
#filereader_registry.file_extensions.append('.json')
#filereader_registry.file_readers.update({'ACSM_TOFWARE_flags_json' : lambda x: flag_reader.read_jsonflag_as_dict(x)})
import threading
import webbrowser
from time import sleep
EnableVisCheckbox = dbc.Col(dbc.Row([dbc.Col(dcc.Checklist(
id='enable-flag-checkbox',
options=[{'label': html.Span('Enable Flag Visualization', style={'font-size': 15, 'padding-left': 10}), 'value': True}],
value=[],
inline=True),width=6),
dbc.Col(dbc.Button("Load Flags", id='load-flags-button', color='primary'),width=4)],
justify="center", align="center"),
width=12)
FlagVisTable = html.Div(dash_table.DataTable(data=[],
columns=[{"name": i, "id": i} for i in ['id','startdate','enddate','flag_description','parent_ch_pos','parent_channel']],
id='tbl',
style_header={'textAlign': 'center'},
fixed_rows={'headers': True}, # Fixed table headers
style_table={'height': '1000px'}, # Make table scrollable
style_cell={'textAlign': 'left', 'padding': '10px'}, # Cell styling
),
style={
'background-color': '#f0f0f0', # Background color for the table
#'height': '1000px', # Match the table's height
'padding': '5px', # Optional padding around the table
'border': '1px solid #ccc', # Optional border around the background
} )
ReviewOpsPannel = dbc.Col([
# Row 1
dbc.Row([html.H2("Flagging workflow pannel", style={'font-size': 20})]),
# Row 2
dbc.Row([
#dbc.Col(html.Div("Review Status"), width=6),
dcc.Checklist(
id='flag-review-status-checklist',
options=[
{'label': [html.Span("Verify Flags", style={'font-size': 15, 'padding-left': 2})], 'value': 'will review'},
{'label': [html.Span("Ready to Record Flags", style={'font-size': 15, 'padding-left': 2})], 'value': 'will transfer'},
{'label': [html.Span("Finalize Flagging", style={'font-size': 15, 'padding-left': 2})], 'value': 'will apply'}
],
value=[],
#inline=True,
style={
"display": "flex", # Flexbox for left alignment
"flexDirection": "column", # Arrange the items vertically
"alignItems": "flex-start" # Align the items to the left
}
),
]),
# Row 3
dbc.Row([
#dbc.Col(dbc.Button("Load Flags", id='button-1', color='primary'),width=4),
dbc.Col(dbc.Button("Delete Flag", id='delete-flag-button', color='primary'),width=4),
dbc.Col(dbc.Button("Record Flags", id='button-2', color='primary'),width=4),
dbc.Col(dbc.Button("Apply Flags", id='button-3', color='primary'),width=4)],
justify="center", align="center"),
# Row 4
#dbc.Row([
# dbc.Col(html.Div("Apply Flags"), width=6),
# dbc.Col(dbc.Button("Button 2", id='button-2', color='secondary'), width=6),
#]),
],width=12)
# Initialize Dash app with Bootstrap theme
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
#df = pd.DataFrame.empty()
app.layout = dbc.Container([
html.Div(children=[
html.Div(children=[
html.H1('QC/QA Data Flagging App'),
html.H6('All measurements are assumed valid unless checked otherwise.')
]
)],style={'textAlign': 'center'}),
dbc.Row([
dbc.Col([
dcc.Upload(
id='upload-image',
children=html.Div(['Drag and Drop or ',html.A('Select Files')]),
style={
'fontSize': "16px",
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
}),
dcc.Dropdown(
id='flag-options',
options= data_flagging_utils.filter_flags_by_label(data_flagging_utils.flags_dict,'I'), # displays only flags to invalidate
)],
width=12
),
#],justify="center", align="center"),
#dbc.Row([
dbc.Col([dbc.Button('Create Flag', id='flag-button', color="primary", className="mt-2")],width=2),
dbc.Col([dbc.Button('Reset Flag', id='reset-flag-button', color="secondary", className="mt-2")],width=2),
dbc.Col([dbc.Button('Commit Flag', id='commit-flag-button', color="secondary", className="mt-2")],width=2)
], justify="center", align="center",style={'background-color': '#f8f9fa', 'padding': '20px', 'text-align': 'center'}),
dbc.Row([
html.H3("Instrument Dashboard"),
# First Dropdown (Instrument Folders)
dcc.Dropdown(
id="instrument-dropdown",
options=[{"label": i, "value": i} for i in []],
placeholder="Select an Instrument Folder",
),
# Spinner wrapping the second and third dropdowns
dcc.Loading(
type="circle", # Spinner style
children=[
# Second Dropdown (Files)
dcc.Dropdown(
id="file-dropdown",
placeholder="Select a File",
disabled=True # Initially disabled
),
# Third Dropdown (Sub-selection)
dcc.Dropdown(
id="sub-dropdown",
placeholder="Select Variables",
multi = True,
disabled=True
)
]
)
],
justify="center", align="center",style={'background-color': '#f8f9fa', 'padding': '20px', 'text-align': 'center'}),
dbc.Row([
dbc.Col([
html.Div([
html.Div(id='flag-mode-title', style={'whiteSpace': 'pre-line'}),
dcc.Loading(
type="circle", # Spinner style
children=[
dcc.Graph(id='timeseries-plot',
style={'height': '1200px','width' : '100%'})])
],
style={'height': '1000px', 'overflowY': 'auto'})
],
width=8,
style={'background-color': '#e9ecef', 'padding': '20px', 'text-align': 'center','height': '1000px'}),
#dbc.Col([html.Div(id='flag-record', style={'whiteSpace': 'pre-line'})], width=4), #config={'modeBarButtons': True,
#'modeBarButtonsToAdd':['select2d','lasso2d'],
#'modeBarButtonsToRemove': ['zoom', 'pan']}),], width=12)
dbc.Col([
html.Div([
EnableVisCheckbox,
FlagVisTable,
ReviewOpsPannel,
],
style={'height': '1000px','overflowY': 'auto'}), # Set a fixed height for the div
],
width=4,
style={'background-color': '#dee2e6', 'padding': '20px', 'text-align': 'center','height': '1000px'},)
],justify="center", align="center"),
dbc.Row([ # row 3
dbc.Col([
dcc.Store(id='memory-output'),
html.Div(id='textarea-example-output', style={'whiteSpace': 'pre-line'})
], width=12)
],justify="center", align="center"),
],
)
#@app.callback()
@app.callback(
Output('memory-output','data', allow_duplicate=True),
Output("instrument-dropdown", "options"),
Output("instrument-dropdown", "disabled"),
[Input('upload-image','filename'),
Input('upload-image','contents')],
prevent_initial_call=True
)
def load_data(filename, contents):
data = {'data_loaded_flag': False}
if filename and contents and filename.endswith('.h5'):
try:
path_to_file = data_flagging_utils.save_file(filename,contents)
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
DataOps.load_file_obj()
#content_type, content_string = contents.split(',')
#decoded = base64.b64decode(content_string)
#file_path = io.BytesIO(decoded)
DataOps.extract_and_load_dataset_metadata()
df = DataOps.dataset_metadata_df.copy()
DataOps.unload_file_obj()
# TODO: allow selection of instrument folder
instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()]
# Create list of file names in dict format for the first instFolder
instFolderName = df['parent_instrument'].unique()[0]
instFolderFileList = list(df.loc[df['parent_instrument']==instFolderName,'parent_file'].to_numpy())
#file_list = [{"label": fileName, "value": fileName} for fileName in child_files]
#fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder)
data['data_loaded_flag'] = True
data['path_to_uploaded_file'] = path_to_file
data['dataset_metadata_table'] = {}# df.to_dict()
data[instFolderName] = instFolderFileList
data['instFolder'] = instFolderName
#data['channel_names'] = channel_names
return data, instrument_list, False
except Exception as e:
DataOps.unload_file_obj()
print(f"Error processing file: {e}")
return data, [], False
return data, [], False
@app.callback(
Output("file-dropdown", "options"),
Output("file-dropdown", "disabled"),
Input("instrument-dropdown", "value"),
State('memory-output','data'),
prevent_initial_call=True
)
def update_file_dropdown(instFolderName, data):
# Verify if dataset_metadata from uploaded HDF5 file was loaded correctly
if not all([instFolderName, data]):
return [], False
if not 'dataset_metadata_table' in data.keys():
return [], False
file_list = []
# Get files in instFolder
instFolderFileList = data.get(instFolderName,[])
# Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata
if instFolderFileList:
file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList]
else:
path_to_file = data['path_to_uploaded_file']
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
DataOps.load_file_obj()
#content_type, content_string = contents.split(',')
#decoded = base64.b64decode(content_string)
#file_path = io.BytesIO(decoded)
DataOps.extract_and_load_dataset_metadata()
tmp = DataOps.dataset_metadata_df.copy()
DataOps.unload_file_obj()
instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy()
file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList]
return file_list, False
@app.callback(
Output("sub-dropdown", "options"),
Output("sub-dropdown", "disabled"),
Output("sub-dropdown", "value"),
Input("instrument-dropdown", "value"),
Input("file-dropdown", "value"),
State('memory-output','data'),
prevent_initial_call=True,
)
def update_variable_dropdown(instFolderName, fileName, data):
# Verify if dataset_metadata from uploaded HDF5 file was loaded correctly
#if not isinstance(data,dict):
# return [], False
if not all([instFolderName, fileName, data]):
return [], False, []
#file_list = []
# Get files in instFolder
#instFolderFileList = data.get(instFolderName,[])
# Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata
try:
path_to_file = data['path_to_uploaded_file']
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
DataOps.load_file_obj()
dataset_name = '/'.join([instFolderName,fileName,'data_table'])
# Get attributes for data table
datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name)
metadata_dict = DataOps.get_metadata(dataset_name)
#content_type, content_string = contents.split(',')
#decoded = base64.b64decode(content_string)
#file_path = io.BytesIO(decoded)
#DataOps.extract_and_load_dataset_metadata()
#tmp = DataOps.dataset_metadata_df.copy()
#DataOps.unload_file_obj()
#instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy()
variableList = []
for var_name in metadata_dict.keys():
if var_name != datetime_var:
variableList.append(var_name)
DataOps.unload_file_obj()
except Exception as e:
DataOps.unload_file_obj()
print(f"Error processing dataset_name: {e}")
return [], False, []
return [{"label": var_name, "value": var_name} for var_name in variableList] , False, variableList
@app.callback(
Output('timeseries-plot', 'figure'),
Output('memory-output','data'),
Input('instrument-dropdown', 'value'),
Input('file-dropdown', 'value'),
Input('sub-dropdown', 'value'),
Input('memory-output', 'data'),
prevent_initial_call=True
)
def update_figure(instFolderName, fileName, variableList, data):
# Check if any input is None or empty
if not all([instFolderName, fileName, variableList, data]):
return go.Figure(), dash.no_update # Return an empty figure to prevent crashes
path_to_file = data.get('path_to_uploaded_file')
if not path_to_file:
return go.Figure(), dash.no_update
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
DataOps.load_file_obj()
dataset_name = '/'.join([instFolderName, fileName, 'data_table'])
# Get attributes for data table
datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name)
DataOps.unload_file_obj()
fig, channel_names = data_flagging_utils.create_loaded_file_figure(
path_to_file, instFolderName, dataset_name, datetime_var, datetime_var_format, variableList
)
data['channel_names'] = channel_names
return fig, data
"""@app.callback(
Output('memory-output','data'),
Output('timeseries-plot', 'figure'),
Output("instrument-dropdown", "options"),
Output("instrument-dropdown", "disabled"),
[Input('upload-image','filename')],
[Input('upload-image','contents')]
)
def load_data(filename, contents):
data = {'data_loaded_flag': False}
if filename and contents and filename.endswith('.h5'):
try:
path_to_file = data_flagging_utils.save_file(filename,contents)
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
DataOps.load_file_obj()
#content_type, content_string = contents.split(',')
#decoded = base64.b64decode(content_string)
#file_path = io.BytesIO(decoded)
DataOps.extract_and_load_dataset_metadata()
df = DataOps.dataset_metadata_df.copy()
# TODO: allow selection of instrument folder
instfolder = df['parent_instrument'].unique()[0]
instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()]
#fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder)
data['data_loaded_flag'] = True
data['path_to_uploaded_file'] = path_to_file
data['instfolder'] = instfolder
#data['channel_names'] = channel_names
DataOps.unload_file_obj()
return data, dash.no_update, instrument_list, False
except Exception as e:
DataOps.unload_file_obj()
print(f"Error processing file: {e}")
return data, dash.no_update, instrument_list, False
return data, dash.no_update, [], False"""
@app.callback(
Output('timeseries-plot', 'figure', allow_duplicate=True),
Output('flag-mode-title','children'),
Input('flag-button', 'n_clicks'),
State('timeseries-plot', 'figure'),
State('memory-output', 'data'),
prevent_initial_call=True,
)
def create_flag(n_clicks, fig, data):
#if not data or not data.get('data_loaded_flag', False):
if not all([n_clicks, fig, data]):
return dash.no_update, dash.no_update
fig['layout'].update({'dragmode' : 'select',
'activeselection' : dict(fillcolor='yellow'),
'doubleClick' : 'reset'
})
#fig['layout'].update({'title':"Flagging Mode Enabled: Select ROI to Define Flagging Interval."})
#value = '{} amigos'.format(n_clicks)
title = "Flagging Mode Enabled: Select ROI to Define Flagging Interval."
return fig, title
#return fig
#@app.callback(
# Output('timeseries-plot', 'figure', allow_duplicate=True),
# Output('timeseries-plot', 'selectedData', allow_duplicate=True),
# #Output('textarea-example-output','children'),
# Input('reset-flag-button', 'n_clicks'),
# State('timeseries-plot', 'figure'),
# #State('memory-output', 'data'),
# prevent_initial_call=True
#)
#def clear_flag(n_clicks, fig):
#if not data or not data.get('data_loaded_flag', False):
# return dash.no_update, dash.no_update
# fig['layout'].update({'dragmode': 'zoom', 'activeselection': None})
#fig.update_layout()
#update_layout(dragmode='select', activeselection=dict(fillcolor='yellow'))
#shapes = []
#if relayoutData and 'xaxis.range[0]' in relayoutData:
# start = relayoutData['xaxis.range[0]']
# end = relayoutData['xaxis.range[1]']
#else:
# start, end = None, None
#if start and end:
# shapes.append({
# 'type': 'rect',
# 'xref': 'x',
# 'yref': 'paper',
# 'x0': start,
# 'y0': 0,
# 'x1': end,
# 'y1': 1,
# 'fillcolor': 'rgba(128, 0, 128, 0.3)',
# 'line': {'width': 0}
# })
# fig['layout'].update(shapes=shapes)
#value = '{} amigos'.format(n_clicks)
# return fig, None #, f'You have entered: \n{value}'
@app.callback(
[Output('timeseries-plot', 'selectedData'),
Output('timeseries-plot', 'figure', allow_duplicate=True),
Output('flag-mode-title', 'children',allow_duplicate=True)],
[Input('reset-flag-button', 'n_clicks'),
State('timeseries-plot', 'figure'),
State('memory-output', 'data')],
prevent_initial_call = True)
def clear_flag(n_clicks, fig, data):
if n_clicks > 0 and data.get('data_loaded_flag', False):
# Clear selection
selected_data = None
fig['layout'].update({'dragmode': 'zoom', 'activeselection': None,
'selections':{'line': None}})
instFolder =data['instFolder']
fig['layout'].update({'title': f'{instFolder}: Target and Diagnostic Channels'})
flagging_mode_message = ''
return selected_data, fig, flagging_mode_message
else:
return dash.no_update, dash.no_update, dash.no_update
@app.callback(
[Output('timeseries-plot', 'figure', allow_duplicate=True),
Output('timeseries-plot', 'selectedData',allow_duplicate=True),
Output('flag-mode-title', 'children',allow_duplicate=True)],
[Input('timeseries-plot', 'relayoutData'),
State('timeseries-plot', 'figure'),
State('memory-output', 'data')],
prevent_initial_call = True)
def clear_flag_mode_title(relayoutData, fig, data):
if not all([relayoutData, fig, data]):
return dash.no_update, dash.no_update, dash.no_update
if data.get('data_loaded_flag', False) and not fig['layout'].get('dragmode',None) == 'select':
# Clear selection
selected_data = None
fig['layout'].update({'dragmode': 'zoom', 'activeselection': None,
'selections':{'line': None}})
#instFolder =data['instfolder']
#fig['layout'].update({'title': f'{instFolder}: Target and Diagnostic Channels'})
flagging_mode_message = ''
return fig, selected_data, flagging_mode_message
else:
return dash.no_update, dash.no_update, dash.no_update
def extract_number(s):
return int(s[1:])-1 if s[1:].isdigit() else 0
@callback(Output('tbl', 'data'),
Input('commit-flag-button','n_clicks'),
State('flag-options','value'),
State('timeseries-plot','selectedData'),
State('memory-output', 'data'),
prevent_initial_call=True)
def commit_flag(n_clicks,flag_value,selected_Data, data):
value = selected_Data
if (selected_Data is None) and (not isinstance(selected_Data,dict)):
return []
elif not selected_Data.get('range',[]): # verify if there is a flag's time interval to commit
return []
# TODO: modify the name path/to/name to reflect the directory provenance
instFolder = data['instFolder']
filePath = data['path_to_uploaded_file']
flagfolderpath = os.path.join(os.path.splitext(data['path_to_uploaded_file'])[0],f'{instFolder}_flags')
if not os.path.isdir(flagfolderpath):
os.makedirs(flagfolderpath)
#dirlist = os.listdir(flagfolderpath)
# Get all files in the directory with their full paths
files = [os.path.join(flagfolderpath, f) for f in os.listdir(flagfolderpath)]
# Sort files by creation time
dirlist_sorted_by_creation = sorted(files, key=os.path.getctime)
#dirlist = dirlist.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
display_flag_registry = False
if not display_flag_registry:
tableData = []
else:
tableData = data_flagging_utils.load_flags(filePath, instFolder)
#tableData = []
#for pathtofile in dirlist_sorted_by_creation:
# if '.json' in pathtofile:
# with open(pathtofile,'r') as f:
# tableData.append(json.load(f))
number_of_existing_flags = len(dirlist_sorted_by_creation)
flagid = number_of_existing_flags+1
flag_filename = os.path.join(flagfolderpath,f'flag_{flagid}.json')
#if not os.path.exists(flag_filename):
# with open(flag_filename,'r') as open_flagsfile:
# json_flagsobject = json.load(open_flagsfile)
# data = [json_flagsobject[key] for key in json_flagsobject.keys()]
#return f'You have entered: \n{value}'
channel_names = data.get('channel_names', [])
for key, value in selected_Data['range'].items():
if 'x' in key:
new_row = {'id':flagid,'startdate':value[0],'enddate':value[1],'flag_code': flag_value}
new_row.update(data_flagging_utils.flags_dict.get(flag_value,{}))
if channel_names:
channel_pos = extract_number(key)
parent_channel, parent_dataset = tuple(channel_names[channel_pos].split(','))
new_row.update({'parent_ch_pos': str(channel_pos), 'parent_channel':parent_channel, 'parent_dataset': parent_dataset})
tableData.append(new_row)
#data = [{'startdate':value[0],'enddate':value[1],'value':90}]
if not os.path.exists(flag_filename):
with open(flag_filename,'w') as flagsfile:
#json_flagsobject = json.dump({'row'+str(len(data)): new_row}, flagsfile)
json.dump(new_row, flagsfile)
#else:
# with open(flag_filename,'a') as flagsfile:
# json.dump(new_row, flagsfile)
#json.dump({'row'+str(len(data)): new_row}, flagsfile)
#data = [json_flagsobject[key] for key in json_flagsobject.keys()]
return tableData
#@callback(Output('memory-output','data',allow_duplicate=True),
# [Input('enable-flag-checkbox', 'value'), State('memory-output','data')],
# prevent_initial_call=True)
#[Input('tbl','active_cell'), Input('enable-flag-checkbox', 'value') State('timeseries-plot', 'figure'), State('tbl','data')],)
#def enable_flag_visualization(value, memory):
# if isinstance(memory,dict):
# memory.update({'vis_enabled' : value})
# return memory
# return dash.no_update
@callback(Output('timeseries-plot', 'figure',allow_duplicate=True),
[Input('enable-flag-checkbox', 'value'), State('timeseries-plot', 'figure')],
prevent_initial_call = True)
def clear_flags_from_figure(value, figure):
vis_enabled = value[0] if value and isinstance(value, list) else False
if not vis_enabled and figure:
shapes = figure.get('layout', {}).get('shapes', [])
if shapes: # If there are shapes in the figure, clear them
new_figure = figure.copy() # Create a copy to avoid mutation
new_figure['layout']['shapes'] = []
return new_figure
return dash.no_update
@callback(Output('timeseries-plot', 'figure',allow_duplicate=True),
[Input('tbl','active_cell'),
State('enable-flag-checkbox', 'value'), State('timeseries-plot', 'figure'), State('tbl','data')],
prevent_initial_call = True)
def visualize_flag_on_figure(active_cell, value, figure, data):
if value:
vis_enabled = value[0]
else:
vis_enabled = False
if active_cell and vis_enabled:
row = active_cell['row']
startdate = data[row]['startdate']
enddate = data[row]['enddate']
parent_ch_pos = data[row].get('parent_ch_pos',None)
if parent_ch_pos != None:
# Ensure that startdate and enddate are parsed correctly
#startdate = pd.to_datetime(startdate)
#enddate = pd.to_datetime(enddate)
# Determine y-axis range directly from layout
yaxis_key = f"yaxis{int(parent_ch_pos) + 1}" if int(parent_ch_pos) > 0 else "yaxis"
xaxis_key = f"xaxis{int(parent_ch_pos) + 1}" if int(parent_ch_pos) > 0 else "xaxis"
#y_min = figure['layout'].get(yaxis_key, {}).get('range', [0, 1])[0]
#y_max = figure['layout'].get(yaxis_key, {}).get('range', [0, 1])[1]
# Add a vertical region to the specified subplot
figure['layout']['shapes'] = figure['layout'].get('shapes', []) + [
dict(
type="rect",
xref=xaxis_key.replace('axis', ''),
yref=yaxis_key.replace('axis', ''),
x0=startdate,
x1=enddate,
y0=figure['layout'][yaxis_key]['range'][0],
y1=figure['layout'][yaxis_key]['range'][1],
line=dict(color="rgba(50, 171, 96, 1)", width=2),
fillcolor="rgba(50, 171, 96, 0.3)",
)
]
return figure
return dash.no_update
@callback(Output('tbl', 'data',allow_duplicate=True),
[Input('load-flags-button','n_clicks'),State('enable-flag-checkbox', 'value'),State('memory-output', 'data')],
prevent_initial_call = True)
def visualize_flags_on_table(n_clicks,value,memoryData):
instFolder = memoryData.get('instfolder', '')
filePath = memoryData.get('path_to_uploaded_file', '')
#flagfolderpath = os.path.join(os.path.splitext(memoryData['path_to_uploaded_file'])[0],f'{instfolder}_flags')
if not filePath:
return dash.no_update
#flagfolderpath = os.path.join(os.path.splitext(memoryData['path_to_uploaded_file'])[0],f'{instfolder}_flags')
## Return no table update if there is no flags folder
#if not os.path.exists(flagfolderpath):
# return dash.no_update
#files = [os.path.join(flagfolderpath, f) for f in os.listdir(flagfolderpath)]
vis_enabled = value[0] if value and isinstance(value, list) else False
if n_clicks > 0 and vis_enabled: # and len(files) > 0:
tableData = data_flagging_utils.load_flags(filePath, instFolder)
if not tableData:
return dash.no_update
else:
return tableData
# # Sort files by creation time
# dirlist_sorted_by_creation = sorted(files, key=os.path.getctime)
# tableData = []
# for pathtofile in dirlist_sorted_by_creation:
# if '.json' in pathtofile:
# try:
# with open(pathtofile,'r') as f:
# tableData.append(json.load(f))
# except (json.JSONDecodeError, FileNotFoundError) as e:
# print(e)
# continue # Skip invalid or missing files
# return tableData
return dash.no_update
def open_browser():
"""Wait for the server to start, then open the browser."""
sleep(1) # Wait briefly to ensure the server is starting
webbrowser.open_new("http://127.0.0.1:8050/")
if __name__ == '__main__':
# Start the browser-opening function in a separate thread
threading.Thread(target=open_browser).start()
# Run the Dash app server
app.run_server(debug=True, use_reloader=False)

316
app/data_flagging_utils.py Normal file
View File

@ -0,0 +1,316 @@
import dima.src.hdf5_ops as h5de
from plotly.subplots import make_subplots
import plotly.graph_objs as go
import base64
import os
import numpy as np
import pandas as pd
import dima.utils.g5505_utils as utils
UPLOAD_DIRECTORY = 'data_products/'
flags_dict = {
"000" : {"flag_label": 'V', "flag_description": "Valid measurement"},
"100" : {"flag_label": 'V', "flag_description": "Checked by data originator. Valid measurement, overrides any invalid flags"},
"110" : {"flag_label": 'V', "flag_description": "Episode data checked and accepted by data originator. Valid measurement"},
"111" : {"flag_label": 'V', "flag_description": "Irregular data checked and accepted by data originator. Valid measurement"},
"456" : {"flag_label": 'I', "flag_description": "Invalidated by data originator"},
"460" : {"flag_label": 'I', "flag_description": "Contamination suspected"},
"559" : {"flag_label": 'V', "flag_description": "Unspecified contamination or local influence, but considered valid"},
"599" : {"flag_label": 'I', "flag_description": "Unspecified contamination or local influence"},
"652" : {"flag_label": 'V', "flag_description": "construction/activity nearby"},
"659" : {"flag_label": 'I', "flag_description": "Unspecified instrument/sampling anomaly"},
"660" : {"flag_label": 'V', "flag_description": "Unspecified instrument/sampling anomaly"},
"999" : {"flag_label": 'I', "flag_description": "Missing measurement, unspecified reason"}
}
def save_file(name, content):
# Decode the content and save the file
content_type, content_string = content.split(',')
decoded = base64.b64decode(content_string)
file_path = os.path.join(UPLOAD_DIRECTORY, name)
if not os.path.exists(file_path):
with open(file_path, "wb") as f:
f.write(decoded)
print(f"File saved successfully at {file_path}")
return file_path
else:
print(f'File already exists at {file_path}.\nTo maintain the integrity of the existing file, it will not be overwritten.')
return file_path
def filter_flags_by_label(flags_dict, label):
"""
Filters the flags dictionary by the specified label.
Parameters:
-----------
flags_dict (dict): The dictionary containing flags.
label (str): The label to filter by ('I' or 'V').
Returns:
--------
list: A list of dictionaries with 'label' and 'value' for the specified label.
"""
return [{'label': value['flag_description'], 'value': code}
for code, value in flags_dict.items() if value['flag_label'] == label]
def create_loaded_file_figure(file_path, instfolder):
DataOpsAPI = h5de.HDF5DataOpsManager(file_path)
if not DataOpsAPI.file_obj:
DataOpsAPI.load_file_obj()
target_channels = DataOpsAPI.file_obj[instfolder].attrs['target_channels']['names'][0].decode().split(',')
target_loc = DataOpsAPI.file_obj[instfolder].attrs['target_channels']['location'][0].decode()
diagnostic_channels = DataOpsAPI.file_obj[instfolder].attrs['diagnostic_channels']['names'][0].decode().split(',')
diagnostic_loc = DataOpsAPI.file_obj[instfolder].attrs['diagnostic_channels']['location'][0].decode()
#fig = make_subplots(rows=(len(target_channels+diagnostic_channels)-2), cols=1, shared_xaxes=True,
# row_heights = [1 for i in range(len(target_channels+diagnostic_channels)-2)])
fig = make_subplots(rows=(len(target_channels+diagnostic_channels)-2), cols=1,
row_heights = [1 for i in range(len(target_channels+diagnostic_channels)-2)])
traces = []
trace_idx = 1
dataset = DataOpsAPI.file_obj[target_loc]
time_column = DataOpsAPI.reformat_datetime_column(target_loc,target_channels[0],'%d.%m.%Y %H:%M:%S.%f')
for i in range(1,len(target_channels)):
fig.add_trace(go.Scatter(x = time_column,
y = dataset[target_channels[i]][:],
mode = 'lines',
name = target_channels[i]), row=trace_idx, col=1)
fig.update_yaxes(title_text= target_channels[i], row=trace_idx, col=1)
trace_idx = trace_idx + 1
dataset = DataOpsAPI.file_obj[diagnostic_loc]
time_column = DataOpsAPI.reformat_datetime_column(diagnostic_loc,diagnostic_channels[0],'%d.%m.%Y %H:%M:%S')
for i in range(1,len(diagnostic_channels)):
fig.add_trace(go.Scatter(x = time_column,
y = dataset[diagnostic_channels[i]][:],
mode = 'lines',
name = diagnostic_channels[i]), row=trace_idx, col=1)
fig.update_yaxes(title_text= diagnostic_channels[i], row=trace_idx, col=1, type="log")
trace_idx = trace_idx + 1
fig.update_layout(height=1200, title_text=f"{instfolder} : Target and Diagnostic Channels", showlegend=False)
DataOpsAPI.unload_file_obj()
target_channels.remove(target_channels[0])
diagnostic_channels.remove(diagnostic_channels[0])
return fig, [','.join([item,target_loc]) for item in target_channels] + [','.join([item,diagnostic_loc]) for item in diagnostic_channels]
#import os
import json
import h5py
def load_flags(filePath, instFolder, dry_run : bool = False):
"""
Returns a list of flags (dictionaries) based on the provided filePath and instFolder.
Parameters:
-----------
filePath (str): The path to the uploaded file, expected to have an .h5 extension.
instFolder (str): The name of the instrument folder, which must exist as a group in the HDF5 file.
dry_run (bool): If True, performs all operations except loading file contents.
Returns:
--------
list: A list of dictionaries containing flag data (or file paths in dry_run mode),
or None if conditions are not met.
"""
# Ensure the input file is an .h5 file
if not filePath.endswith('.h5'):
print(f"Invalid file extension: {filePath}. Expected a .h5 file.")
return None
# Ensure the instFolder exists as a group in the HDF5 file
try:
with h5py.File(filePath, 'r') as h5file:
if instFolder not in h5file:
print(f"Instrument folder '{instFolder}' not found in HDF5 file.")
return None
except (OSError, IOError) as e:
print(f"Error reading HDF5 file: {e}")
return None
# Construct the flags folder path
flagFolderPath = os.path.join(os.path.splitext(filePath)[0], f'{instFolder}_flags')
# Return None if the flags folder does not exist
if not os.path.exists(flagFolderPath):
return None
# List files in the flags folder
files = [os.path.join(flagFolderPath, f) for f in os.listdir(flagFolderPath)]
# If no files found, return None
if not files:
return None
# Sort files by creation time
sortedFiles = sorted(files, key=os.path.getctime)
if dry_run:
print(f"Dry run: Found {len(sortedFiles)} files in the flags folder:")
for filePath in sortedFiles:
print(f" - {filePath}")
return sortedFiles # Return file paths in dry run mode
# Process and load JSON files
flagDataList = []
for filePath in sortedFiles:
if filePath.endswith('.json'):
try:
with open(filePath, 'r') as file:
flagDataList.append(json.load(file))
except (json.JSONDecodeError, FileNotFoundError) as e:
print(f"Error loading file {filePath}: {e}")
continue # Skip invalid or missing files
return flagDataList
class FlaggingAppDataManager():
def __init__(self, file_path, mode = 'r+') -> None:
self.file_path = file_path
self.mode = mode
self._data_ops_obj = None
self.file_obj = None
self.datasets_metadata_df = None
return None
def load_file_obj(self):
self._data_ops_obj = h5de.HDF5DataOpsManager(self.file_path, self.mode)
self._data_ops_obj.load_file_obj()
self.file_obj = self._data_ops_obj.file_obj
def unload_file_obj(self):
self._data_ops_obj = h5de.HDF5DataOpsManager(self.file_path, self.mode)
self._data_ops_obj.unload_file_obj() # sets __data_ops_obj.file_obj to None
def transfer_flags(self):
if self.file_obj is None:
raise RuntimeError("File object is not loaded. Please load the HDF5 file using the 'load_file_obj' method before attempting to modify it.")
path_to_append_dir, ext = os.path.splitext(self.file_path)
self._data_ops_obj.update_file(path_to_append_dir)
def apply_flags(self,instFolder):
# TODO: apply flags to diagnostic and indivial channels. so far is all channels are cleaned
if self.file_obj is None:
raise RuntimeError("File object is not loaded. Please load the HDF5 file using the 'load_file_obj' method before attempting to modify it.")
DataOpsManager = self._data_ops_obj
file_obj = self.file_obj
#with h5py.File(self.file_path, mode = self.mode, track_order=True) as file_obj:
try:
if not instFolder in file_obj:
raise ValueError(f'Invalid instrument name. Instrument folder {instFolder} was not found in file {self.file_path}.')
if '_'.join([instFolder,'flags']) not in flag_obj:
raise RuntimeWarning(f'There is no flags to apply. ')
if not ('diagnostic_channels' in file_obj[instFolder].attrs and 'target_channels' in file_obj[instFolder].attrs):
raise ValueError(
f'Required attributes missing. Instrument folder {instFolder} in file {self.file_path} has to be annotated with '
'attributes "diagnostic_channels" and "target_channels" that specify channels location and their names.'
)
dataset_name = file_obj[instFolder].attrs['target_channels']['location'][0].decode()
channel_names = file_obj[instFolder].attrs['target_channels']['names'][0].decode().split(',')
dataset_obj = file_obj[dataset_name]
# TODO: maybe we can do this directly on dataset = dataset_obj[...], which is a structured numpy array, instead of wrapping that as dataframe
dataset_df = DataOpsManager.extract_dataset_as_dataframe(dataset_name)
# Define datetime variable based on channel names. We assume by design the first entry of the list is the datetime variable name.
datetime_var = channel_names[0]
remaining_vars = channel_names.copy()
remaining_vars.remove(datetime_var)
ref_datetime_format = dataset_obj.attrs.get(datetime_var,None)['datetime_format'][0].decode()
#datetime_var_data = pd.Series([item.decode() for item in dataset_obj[datetime_var]])
#datetime_var_data = pd.to_datetime(datetime_var_data , format = ref_datetime_format, errors = 'coerce')
dataset_df[datetime_var] = dataset_df[datetime_var].apply(lambda x: x.decode() )
dataset_df[datetime_var] = pd.to_datetime(dataset_df[datetime_var], format = ref_datetime_format, errors = 'coerce')
flag_indicator = np.zeros(shape = dataset_df[datetime_var].shape,
dtype = bool)
# TODO: include this information as part of the flag's attributes in the flag recording process
flag_datetime_format='%Y-%m-%d %H:%M:%S.%f'
for flag in file_obj[f'{instFolder}_flags']:
flag_obj = file_obj[f'{instFolder}_flags'][flag]['data_table']
# Replace values indicated by flag NaN if flag label refers to invalidated data.
if not flag_obj['flag_code'][0].decode() is 'None':
flag_label = ''
else:
flag_label = flag_obj['flag_label'][0].decode()
if flag_label == 'I':
t1 = pd.to_datetime(flag_obj['startdate'][0].decode(), format=flag_datetime_format)
t2 = pd.to_datetime(flag_obj['enddate'][0].decode(), format=flag_datetime_format)
t1_idx = abs(dataset_df[datetime_var]-t1).argmin()
t2_idx = abs(dataset_df[datetime_var]-t2).argmin()
dataset_df.loc[t1_idx:t2_idx,remaining_vars] = np.nan
# Apply the .strftime() method, handling NaT values by filling with an empty string or placeholder
dataset_df[datetime_var] = dataset_df[datetime_var].apply(
lambda x: x.strftime(ref_datetime_format).encode('utf-8') if not pd.isnull(x) else b'' # Handle NaT/NaN by returning empty string
)
# Split full datasetname instFolder/fileName/datatable --> [instFolder, filename, datatable]
dataset_name_parts = dataset_name.split('/')
# Create new instFolder name to store dataset after applying flags
newInstFolder = '_'.join([dataset_name_parts[0],'cleaned'])
dataset_name_parts.remove(dataset_name_parts[0])
# Put together relative datasetname. Note that instFolder is now missing.
flagged_dataset_name = '/'.join(dataset_name_parts)
dataset_dict = {'attributes':{},
'name':flagged_dataset_name,
'data': utils.convert_dataframe_to_np_structured_array(dataset_df)}
dataset_dict['attributes'].update({'creation_date':utils.created_at().encode('utf-8')})
dataset_dict['attributes'].update(dataset_obj.attrs)
DataOpsManager.append_dataset(dataset_dict, newInstFolder)
except Exception as e:
self._data_ops_obj.unload_file_obj()
print(f"An unexpected error occurred: {e}"
"The file object has been properly closed.")
#flag_indicator[t1_idx:t2_idx] = True
#(datetime_var_data-t1).min()
#if not instrument_name in file_obj and not flag_name in file_obj:
# raise ValueError(f'Invalid instrument_name {instrument_name} and flag_name {flag_name}. No object with such names in file {self.file_path}')
#if not f'{instrument_name}_flags':
# raise ValueError(f'There is no flags to work with. Make sure {instrument_name}_flags is created first before running this method.')