mirror of
https://gitea.psi.ch/APOG/acsmnode.git
synced 2025-06-24 21:21:08 +02:00
Implement instrument, file, and variable selection dropdown menus.
This commit is contained in:
@ -150,13 +150,49 @@ app.layout = dbc.Container([
|
||||
dbc.Col([dbc.Button('Reset Flag', id='reset-flag-button', color="secondary", className="mt-2")],width=2),
|
||||
dbc.Col([dbc.Button('Commit Flag', id='commit-flag-button', color="secondary", className="mt-2")],width=2)
|
||||
], justify="center", align="center",style={'background-color': '#f8f9fa', 'padding': '20px', 'text-align': 'center'}),
|
||||
|
||||
dbc.Row([
|
||||
html.H3("Instrument Dashboard"),
|
||||
|
||||
# First Dropdown (Instrument Folders)
|
||||
dcc.Dropdown(
|
||||
id="instrument-dropdown",
|
||||
options=[{"label": i, "value": i} for i in []],
|
||||
placeholder="Select an Instrument Folder",
|
||||
),
|
||||
|
||||
# Spinner wrapping the second and third dropdowns
|
||||
dcc.Loading(
|
||||
type="circle", # Spinner style
|
||||
children=[
|
||||
# Second Dropdown (Files)
|
||||
dcc.Dropdown(
|
||||
id="file-dropdown",
|
||||
placeholder="Select a File",
|
||||
disabled=True # Initially disabled
|
||||
),
|
||||
|
||||
# Third Dropdown (Sub-selection)
|
||||
dcc.Dropdown(
|
||||
id="sub-dropdown",
|
||||
placeholder="Select Variables",
|
||||
multi = True,
|
||||
disabled=True
|
||||
)
|
||||
]
|
||||
)
|
||||
],
|
||||
justify="center", align="center",style={'background-color': '#f8f9fa', 'padding': '20px', 'text-align': 'center'}),
|
||||
|
||||
dbc.Row([
|
||||
dbc.Col([
|
||||
html.Div([
|
||||
html.Div(id='flag-mode-title', style={'whiteSpace': 'pre-line'}),
|
||||
dcc.Loading(
|
||||
type="circle", # Spinner style
|
||||
children=[
|
||||
dcc.Graph(id='timeseries-plot',
|
||||
style={'height': '1200px','width' : '100%'})
|
||||
style={'height': '1200px','width' : '100%'})])
|
||||
],
|
||||
style={'height': '1000px', 'overflowY': 'auto'})
|
||||
],
|
||||
@ -191,8 +227,204 @@ app.layout = dbc.Container([
|
||||
#@app.callback()
|
||||
|
||||
@app.callback(
|
||||
Output('memory-output','data', allow_duplicate=True),
|
||||
Output("instrument-dropdown", "options"),
|
||||
Output("instrument-dropdown", "disabled"),
|
||||
[Input('upload-image','filename'),
|
||||
Input('upload-image','contents')],
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def load_data(filename, contents):
|
||||
data = {'data_loaded_flag': False}
|
||||
if filename and contents and filename.endswith('.h5'):
|
||||
|
||||
try:
|
||||
path_to_file = data_flagging_utils.save_file(filename,contents)
|
||||
|
||||
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
|
||||
DataOps.load_file_obj()
|
||||
|
||||
#content_type, content_string = contents.split(',')
|
||||
#decoded = base64.b64decode(content_string)
|
||||
#file_path = io.BytesIO(decoded)
|
||||
DataOps.extract_and_load_dataset_metadata()
|
||||
df = DataOps.dataset_metadata_df.copy()
|
||||
DataOps.unload_file_obj()
|
||||
|
||||
# TODO: allow selection of instrument folder
|
||||
|
||||
instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()]
|
||||
|
||||
# Create list of file names in dict format for the first instFolder
|
||||
instFolderName = df['parent_instrument'].unique()[0]
|
||||
instFolderFileList = list(df.loc[df['parent_instrument']==instFolderName,'parent_file'].to_numpy())
|
||||
|
||||
#file_list = [{"label": fileName, "value": fileName} for fileName in child_files]
|
||||
|
||||
#fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder)
|
||||
|
||||
data['data_loaded_flag'] = True
|
||||
data['path_to_uploaded_file'] = path_to_file
|
||||
data['dataset_metadata_table'] = {}# df.to_dict()
|
||||
data[instFolderName] = instFolderFileList
|
||||
|
||||
|
||||
data['instFolder'] = instFolderName
|
||||
#data['channel_names'] = channel_names
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
return data, instrument_list, False
|
||||
|
||||
except Exception as e:
|
||||
|
||||
DataOps.unload_file_obj()
|
||||
print(f"Error processing file: {e}")
|
||||
return data, [], False
|
||||
|
||||
|
||||
return data, [], False
|
||||
|
||||
@app.callback(
|
||||
Output("file-dropdown", "options"),
|
||||
Output("file-dropdown", "disabled"),
|
||||
Input("instrument-dropdown", "value"),
|
||||
State('memory-output','data'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def update_file_dropdown(instFolderName, data):
|
||||
|
||||
|
||||
# Verify if dataset_metadata from uploaded HDF5 file was loaded correctly
|
||||
if not all([instFolderName, data]):
|
||||
return [], False
|
||||
|
||||
if not 'dataset_metadata_table' in data.keys():
|
||||
return [], False
|
||||
|
||||
|
||||
file_list = []
|
||||
# Get files in instFolder
|
||||
instFolderFileList = data.get(instFolderName,[])
|
||||
|
||||
# Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata
|
||||
if instFolderFileList:
|
||||
file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList]
|
||||
else:
|
||||
path_to_file = data['path_to_uploaded_file']
|
||||
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
|
||||
DataOps.load_file_obj()
|
||||
|
||||
#content_type, content_string = contents.split(',')
|
||||
#decoded = base64.b64decode(content_string)
|
||||
#file_path = io.BytesIO(decoded)
|
||||
DataOps.extract_and_load_dataset_metadata()
|
||||
tmp = DataOps.dataset_metadata_df.copy()
|
||||
DataOps.unload_file_obj()
|
||||
|
||||
instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy()
|
||||
file_list = [{"label": fileName, "value": fileName} for fileName in instFolderFileList]
|
||||
|
||||
return file_list, False
|
||||
|
||||
@app.callback(
|
||||
Output("sub-dropdown", "options"),
|
||||
Output("sub-dropdown", "disabled"),
|
||||
Output("sub-dropdown", "value"),
|
||||
Input("instrument-dropdown", "value"),
|
||||
Input("file-dropdown", "value"),
|
||||
State('memory-output','data'),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def update_variable_dropdown(instFolderName, fileName, data):
|
||||
|
||||
|
||||
# Verify if dataset_metadata from uploaded HDF5 file was loaded correctly
|
||||
#if not isinstance(data,dict):
|
||||
# return [], False
|
||||
|
||||
if not all([instFolderName, fileName, data]):
|
||||
return [], False, []
|
||||
|
||||
|
||||
#file_list = []
|
||||
# Get files in instFolder
|
||||
#instFolderFileList = data.get(instFolderName,[])
|
||||
|
||||
# Otherwise, if there is no precomputed file list associated with a instFolder, compute that from dataset_metadata
|
||||
try:
|
||||
path_to_file = data['path_to_uploaded_file']
|
||||
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
|
||||
DataOps.load_file_obj()
|
||||
|
||||
dataset_name = '/'.join([instFolderName,fileName,'data_table'])
|
||||
# Get attributes for data table
|
||||
datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name)
|
||||
metadata_dict = DataOps.get_metadata(dataset_name)
|
||||
|
||||
#content_type, content_string = contents.split(',')
|
||||
#decoded = base64.b64decode(content_string)
|
||||
#file_path = io.BytesIO(decoded)
|
||||
#DataOps.extract_and_load_dataset_metadata()
|
||||
#tmp = DataOps.dataset_metadata_df.copy()
|
||||
#DataOps.unload_file_obj()
|
||||
|
||||
|
||||
|
||||
#instFolderFileList = tmp.loc[tmp['parent_instrument']==instFolderName,'parent_file'].to_numpy()
|
||||
variableList = []
|
||||
for var_name in metadata_dict.keys():
|
||||
if var_name != datetime_var:
|
||||
variableList.append(var_name)
|
||||
|
||||
DataOps.unload_file_obj()
|
||||
except Exception as e:
|
||||
DataOps.unload_file_obj()
|
||||
print(f"Error processing dataset_name: {e}")
|
||||
return [], False, []
|
||||
|
||||
return [{"label": var_name, "value": var_name} for var_name in variableList] , False, variableList
|
||||
|
||||
@app.callback(
|
||||
Output('timeseries-plot', 'figure'),
|
||||
Output('memory-output','data'),
|
||||
Input('instrument-dropdown', 'value'),
|
||||
Input('file-dropdown', 'value'),
|
||||
Input('sub-dropdown', 'value'),
|
||||
Input('memory-output', 'data'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def update_figure(instFolderName, fileName, variableList, data):
|
||||
# Check if any input is None or empty
|
||||
if not all([instFolderName, fileName, variableList, data]):
|
||||
return go.Figure(), dash.no_update # Return an empty figure to prevent crashes
|
||||
|
||||
path_to_file = data.get('path_to_uploaded_file')
|
||||
if not path_to_file:
|
||||
return go.Figure(), dash.no_update
|
||||
|
||||
DataOps = hdf5_ops.HDF5DataOpsManager(path_to_file)
|
||||
DataOps.load_file_obj()
|
||||
dataset_name = '/'.join([instFolderName, fileName, 'data_table'])
|
||||
|
||||
# Get attributes for data table
|
||||
datetime_var, datetime_var_format = DataOps.infer_datetime_variable(dataset_name)
|
||||
DataOps.unload_file_obj()
|
||||
|
||||
fig, channel_names = data_flagging_utils.create_loaded_file_figure(
|
||||
path_to_file, instFolderName, dataset_name, datetime_var, datetime_var_format, variableList
|
||||
)
|
||||
data['channel_names'] = channel_names
|
||||
return fig, data
|
||||
|
||||
|
||||
"""@app.callback(
|
||||
Output('memory-output','data'),
|
||||
Output('timeseries-plot', 'figure'),
|
||||
Output("instrument-dropdown", "options"),
|
||||
Output("instrument-dropdown", "disabled"),
|
||||
[Input('upload-image','filename')],
|
||||
[Input('upload-image','contents')]
|
||||
)
|
||||
@ -210,27 +442,32 @@ def load_data(filename, contents):
|
||||
#decoded = base64.b64decode(content_string)
|
||||
#file_path = io.BytesIO(decoded)
|
||||
DataOps.extract_and_load_dataset_metadata()
|
||||
df = DataOps.dataset_metadata_df
|
||||
df = DataOps.dataset_metadata_df.copy()
|
||||
# TODO: allow selection of instrument folder
|
||||
instfolder = df['parent_instrument'].unique()[0]
|
||||
fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder)
|
||||
instrument_list = [{"label": instFolder, "value": instFolder} for instFolder in df['parent_instrument'].unique()]
|
||||
|
||||
#fig, channel_names = data_flagging_utils.create_loaded_file_figure(path_to_file, instfolder)
|
||||
|
||||
data['data_loaded_flag'] = True
|
||||
data['path_to_uploaded_file'] = path_to_file
|
||||
data['instfolder'] = instfolder
|
||||
data['channel_names'] = channel_names
|
||||
#data['channel_names'] = channel_names
|
||||
|
||||
DataOps.unload_file_obj()
|
||||
|
||||
return data, fig
|
||||
|
||||
|
||||
return data, dash.no_update, instrument_list, False
|
||||
|
||||
except Exception as e:
|
||||
|
||||
DataOps.unload_file_obj()
|
||||
print(f"Error processing file: {e}")
|
||||
return data, dash.no_update
|
||||
return data, dash.no_update, instrument_list, False
|
||||
|
||||
|
||||
return data, dash.no_update
|
||||
return data, dash.no_update, [], False"""
|
||||
|
||||
@app.callback(
|
||||
Output('timeseries-plot', 'figure', allow_duplicate=True),
|
||||
@ -238,10 +475,12 @@ def load_data(filename, contents):
|
||||
Input('flag-button', 'n_clicks'),
|
||||
State('timeseries-plot', 'figure'),
|
||||
State('memory-output', 'data'),
|
||||
prevent_initial_call=True
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def create_flag(n_clicks, fig, data):
|
||||
if not data or not data.get('data_loaded_flag', False):
|
||||
#if not data or not data.get('data_loaded_flag', False):
|
||||
|
||||
if not all([n_clicks, fig, data]):
|
||||
return dash.no_update, dash.no_update
|
||||
|
||||
fig['layout'].update({'dragmode' : 'select',
|
||||
@ -312,7 +551,7 @@ def clear_flag(n_clicks, fig, data):
|
||||
selected_data = None
|
||||
fig['layout'].update({'dragmode': 'zoom', 'activeselection': None,
|
||||
'selections':{'line': None}})
|
||||
instFolder =data['instfolder']
|
||||
instFolder =data['instFolder']
|
||||
fig['layout'].update({'title': f'{instFolder}: Target and Diagnostic Channels'})
|
||||
flagging_mode_message = ''
|
||||
return selected_data, fig, flagging_mode_message
|
||||
@ -327,7 +566,9 @@ def clear_flag(n_clicks, fig, data):
|
||||
State('timeseries-plot', 'figure'),
|
||||
State('memory-output', 'data')],
|
||||
prevent_initial_call = True)
|
||||
def clear_flag_mode_title(relayoutData, fig, data):
|
||||
def clear_flag_mode_title(relayoutData, fig, data):
|
||||
if not all([relayoutData, fig, data]):
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
if data.get('data_loaded_flag', False) and not fig['layout'].get('dragmode',None) == 'select':
|
||||
# Clear selection
|
||||
@ -359,7 +600,7 @@ def commit_flag(n_clicks,flag_value,selected_Data, data):
|
||||
return []
|
||||
|
||||
# TODO: modify the name path/to/name to reflect the directory provenance
|
||||
instFolder = data['instfolder']
|
||||
instFolder = data['instFolder']
|
||||
filePath = data['path_to_uploaded_file']
|
||||
|
||||
flagfolderpath = os.path.join(os.path.splitext(data['path_to_uploaded_file'])[0],f'{instFolder}_flags')
|
||||
@ -376,7 +617,7 @@ def commit_flag(n_clicks,flag_value,selected_Data, data):
|
||||
|
||||
#dirlist = dirlist.sort(key=lambda x: int(x.split('_')[1].split('.')[0]))
|
||||
|
||||
display_flag_registry = True
|
||||
display_flag_registry = False
|
||||
if not display_flag_registry:
|
||||
tableData = []
|
||||
else:
|
||||
|
Reference in New Issue
Block a user