Update pipelines/steps/prepare_ebas_submission.py. Rmoved hard coded paths and build output name using metadata from campaign descriptor. Also, we can now specify month ranges

This commit is contained in:
2025-04-08 18:44:46 +02:00
parent 5dd280e88c
commit 3dfed2c5f3

View File

@ -1,172 +1,233 @@
import sys, os
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
if projectPath not in sys.path:
sys.path.insert(0,projectPath)
import argparse
import pandas as pd
import json, yaml
import numpy as np
from pipelines.steps.utils import get_metadata
from pipelines.steps.utils import metadata_dict_to_dataframe
from pipelines.steps.utils import load_project_yaml_files
def join_tables(csv_files: list):
"""
Joins multiple CSV files based on their metadata-defined datetime column.
Parameters
----------
csv_files : list
List of paths to CSV files.
Returns
-------
pd.DataFrame
Merged DataFrame.
"""
if not all(isinstance(item, str) for item in csv_files):
raise TypeError(f"Invalid parameter. csv_files contain non-str items: {[item for item in csv_files if not isinstance(item, str)]}")
if not all(os.path.exists(item) and item.endswith('.csv') for item in csv_files):
raise RuntimeError("Parameter csv_files contains either an unreachable/broken path or a non-CSV file.")
acum_df = pd.read_csv(csv_files[0])
left_datetime_var = get_metadata(csv_files[0]).get('datetime_var', None)
acum_df = acum_df.drop_duplicates(subset=[left_datetime_var])
if left_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[0]}")
for idx in range(1, len(csv_files)):
append_df = pd.read_csv(csv_files[idx])
right_datetime_var = get_metadata(csv_files[idx]).get('datetime_var', None)
if right_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[idx]}")
append_df = append_df.drop_duplicates(subset=[right_datetime_var])
acum_df = acum_df.merge(append_df, left_on=left_datetime_var, right_on=right_datetime_var, how='left')
return acum_df
#import argparse
#import os
#import pandas as pd
from third_party.acsmProcessingSoftware.src import rawto012
#from utils import load_project_yaml_files, metadata_dict_to_dataframe, join_tables # Adjust imports based on actual file locations
def main(paths_to_processed_files : list, path_to_flags : str, month : int = None):
# Set up argument parsing
acum_df = join_tables(paths_to_processed_files)
acsm_to_ebas = load_project_yaml_files(projectPath, "acsm_to_ebas.yaml")
# Select variables that are both in the acsm_to_ebas dict and acum_df
reduced_set_of_vars = [key for key in acum_df.columns if key in acsm_to_ebas['renaming_map'].keys()]
acum_df = acum_df.loc[:, reduced_set_of_vars].rename(columns=acsm_to_ebas['renaming_map'])
flags_acum_df = join_tables([path_to_flags])
flags_acum_df = flags_acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Ensure time columns are datetime
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
flags_acum_df['ACSM_time'] = pd.to_datetime(flags_acum_df['ACSM_time'])
# Apply month filter if specified
if month:
acum_df = acum_df[acum_df['ACSM_time'].dt.month == month]
flags_acum_df = flags_acum_df[flags_acum_df['ACSM_time'].dt.month == month]
# Count the number of NaT (null) values
num_nats = acum_df['ACSM_time'].isna().sum()
total_rows = len(acum_df)
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
num_nats = flags_acum_df['ACSM_time'].isna().sum()
total_rows = len(flags_acum_df)
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
nat_acum = acum_df['ACSM_time'].isna()
nat_flags = flags_acum_df['ACSM_time'].isna()
valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
# Load YAML files
detection_limits = load_project_yaml_files(projectPath, "limits_of_detection.yaml")
station_params = load_project_yaml_files(projectPath, "station_params.yaml")
# Extract dictionaries from required keys
lod_dict = detection_limits.get('LOD', {}).get('variables', {})
jfj_dict = station_params.get('stations', {}).get('JFJ', {})
# Convert dictionaries to DataFrames using the existing function
lod_df = metadata_dict_to_dataframe(lod_dict, shape=(len(acum_df), len(lod_dict)))
jfj_df = metadata_dict_to_dataframe(jfj_dict, shape=(len(acum_df), len(jfj_dict)))
# Ensure indexes are properly aligned for merging
acum_df = acum_df.reset_index() # Convert index to a column for merging
# Merge with LOD DataFrame
acum_df = acum_df.merge(lod_df, left_index=True, right_index=True, how='left')
# Merge with JFJ DataFrame
acum_df = acum_df.merge(jfj_df, left_index=True, right_index=True, how='left')
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Save results
output_dir = os.path.join(projectPath,'data')
output_file1 = os.path.join(output_dir, 'JFJ_ACSM-017_2024.txt')
output_file2 = os.path.join(output_dir, 'JFJ_ACSM-017_FLAGS_2024.txt')
#output_file1 = os.path.join(output_dir, f'JFJ_ACSM-017_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_2024.txt')
#output_file2 = os.path.join(output_dir, f'JFJ_ACSM-017_FLAGS_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_FLAGS_2024.txt')
#acum_df = acum_df[[col for col in acsm_to_ebas['column_order'] if col in acum_df.columns]]
#flags_acum_df = flags_acum_df[[col for col in acsm_to_ebas['flags_column_order'] if col in flags_acum_df.columns]]
acum_df.loc[:, :].to_csv(output_file1, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
flags_acum_df.loc[:, :].to_csv(output_file2, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
# Run external processing application
app = rawto012.Application()
infile = output_file1
acq_err_log = output_file2
outdir = output_dir
app.process(infile, acq_err_log, outdir=outdir)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process and calibrate ACSM data for JFJ station.")
parser.add_argument('--acsm_paths', type=str, required=True, nargs=3, help="Paths to the ACSM timeseries calibrated CSV file, the error CSV file, and the calibration factors CSV file.")
parser.add_argument('--acsm_flags_path', type=str, required=True, help="Path to the ACSM flags CSV file.")
parser.add_argument('--month', type=int, choices=range(1, 13), help="Filter data for a specific month (1-12).")
args = parser.parse_args()
# Load data
csv_files = args.acsm_paths # list of filenames
flags_file = args.acsm_flags_path
month = args.month
main(csv_files, flags_file, month)
import sys, os
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
if projectPath not in sys.path:
sys.path.insert(0,projectPath)
import argparse
import pandas as pd
import json, yaml
import numpy as np
from pipelines.steps.utils import get_metadata
from pipelines.steps.utils import metadata_dict_to_dataframe
from pipelines.steps.utils import load_project_yaml_files
def join_tables(csv_files: list):
"""
Joins multiple CSV files based on their metadata-defined datetime column.
Parameters
----------
csv_files : list
List of paths to CSV files.
Returns
-------
pd.DataFrame
Merged DataFrame.
"""
if not all(isinstance(item, str) for item in csv_files):
raise TypeError(f"Invalid parameter. csv_files contain non-str items: {[item for item in csv_files if not isinstance(item, str)]}")
if not all(os.path.exists(item) and item.endswith('.csv') for item in csv_files):
raise RuntimeError("Parameter csv_files contains either an unreachable/broken path or a non-CSV file.")
acum_df = pd.read_csv(csv_files[0])
left_datetime_var = get_metadata(csv_files[0]).get('datetime_var', None)
acum_df = acum_df.drop_duplicates(subset=[left_datetime_var])
if left_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[0]}")
for idx in range(1, len(csv_files)):
append_df = pd.read_csv(csv_files[idx])
right_datetime_var = get_metadata(csv_files[idx]).get('datetime_var', None)
if right_datetime_var is None:
raise ValueError(f"Missing datetime_var metadata in {csv_files[idx]}")
append_df = append_df.drop_duplicates(subset=[right_datetime_var])
acum_df = acum_df.merge(append_df, left_on=left_datetime_var, right_on=right_datetime_var, how='left')
return acum_df
#import argparse
#import os
#import pandas as pd
from third_party.acsmProcessingSoftware.src import rawto012
#from utils import load_project_yaml_files, metadata_dict_to_dataframe, join_tables # Adjust imports based on actual file locations
def validate_required_field(dct, key):
value = dct.get(key, None)
if not value:
raise ValueError(f'[ERROR] Required field "{key}" is missing or empty in campaignDescriptor.yaml')
return value
def parse_months(month_str: str) -> list:
"""
Convert a string like '1,3,5-7' into a list of valid month integers [112].
Raises ValueError if any value is out of range.
"""
months = set()
for part in month_str.split(','):
part = part.strip()
if '-' in part:
try:
start, end = map(int, part.split('-'))
if not (1 <= start <= 12 and 1 <= end <= 12):
raise ValueError(f"Month range {start}-{end} out of bounds (112)")
months.update(range(start, end + 1))
except Exception:
raise ValueError(f"Invalid range format: '{part}'")
else:
try:
val = int(part)
if not 1 <= val <= 12:
raise ValueError(f"Month {val} is out of bounds (112)")
months.add(val)
except ValueError:
raise ValueError(f"Invalid month value: '{part}'")
return sorted(months)
def main(paths_to_processed_files : list, path_to_flags : str, month : int = None):
# Set up argument parsing
acum_df = join_tables(paths_to_processed_files)
acsm_to_ebas = load_project_yaml_files(projectPath, "acsm_to_ebas.yaml")
# Select variables that are both in the acsm_to_ebas dict and acum_df
reduced_set_of_vars = [key for key in acum_df.columns if key in acsm_to_ebas['renaming_map'].keys()]
acum_df = acum_df.loc[:, reduced_set_of_vars].rename(columns=acsm_to_ebas['renaming_map'])
flags_acum_df = join_tables([path_to_flags])
flags_acum_df = flags_acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Ensure time columns are datetime
acum_df['ACSM_time'] = pd.to_datetime(acum_df['ACSM_time'])
flags_acum_df['ACSM_time'] = pd.to_datetime(flags_acum_df['ACSM_time'])
# Apply month filter if specified
#if month:
# acum_df = acum_df[acum_df['ACSM_time'].dt.month == month]
# flags_acum_df = flags_acum_df[flags_acum_df['ACSM_time'].dt.month == month]
# Apply month filtering if specified
if month:
try:
month_list = parse_months(month)
except Exception as e:
raise ValueError(f"[ERROR] Could not parse month input '{month}': {e}")
acum_df = acum_df[acum_df['ACSM_time'].dt.month.isin(month_list)]
flags_acum_df = flags_acum_df[flags_acum_df['ACSM_time'].dt.month.isin(month_list)]
# Count the number of NaT (null) values
num_nats = acum_df['ACSM_time'].isna().sum()
total_rows = len(acum_df)
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
num_nats = flags_acum_df['ACSM_time'].isna().sum()
total_rows = len(flags_acum_df)
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.2f}%")
nat_acum = acum_df['ACSM_time'].isna()
nat_flags = flags_acum_df['ACSM_time'].isna()
valid_rows = ~(nat_acum | nat_flags) # Compute valid rows in one step
# Load YAML files
detection_limits = load_project_yaml_files(projectPath, "limits_of_detection.yaml")
station_params = load_project_yaml_files(projectPath, "station_params.yaml")
# Extract dictionaries from required keys
lod_dict = detection_limits.get('LOD', {}).get('variables', {})
jfj_dict = station_params.get('stations', {}).get('JFJ', {})
# Convert dictionaries to DataFrames using the existing function
lod_df = metadata_dict_to_dataframe(lod_dict, shape=(len(acum_df), len(lod_dict)))
jfj_df = metadata_dict_to_dataframe(jfj_dict, shape=(len(acum_df), len(jfj_dict)))
# Ensure indexes are properly aligned for merging
acum_df = acum_df.reset_index() # Convert index to a column for merging
# Merge with LOD DataFrame
acum_df = acum_df.merge(lod_df, left_index=True, right_index=True, how='left')
# Merge with JFJ DataFrame
acum_df = acum_df.merge(jfj_df, left_index=True, right_index=True, how='left')
acum_df = acum_df.rename(columns=acsm_to_ebas['renaming_map'])
# Load descriptor
campaignDescriptorDict = load_project_yaml_files(projectPath, 'campaignDescriptor.yaml')
# Validate required fields
station = validate_required_field(campaignDescriptorDict, 'station')
instrument_name = validate_required_field(campaignDescriptorDict, 'instrument_name')
year = validate_required_field(campaignDescriptorDict, 'year')
# Build output paths
output_dir = os.path.join(projectPath, 'data')
os.makedirs(output_dir, exist_ok=True)
output_file1 = os.path.join(output_dir, f'{station}_{instrument_name}_{year}.txt')
output_file2 = os.path.join(output_dir, f'{station}_{instrument_name}_FLAGS_{year}.txt')
#output_file1 = os.path.join(output_dir, f'JFJ_ACSM-017_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_2024.txt')
#output_file2 = os.path.join(output_dir, f'JFJ_ACSM-017_FLAGS_2024_month{args.month}.txt' if args.month else 'JFJ_ACSM-017_FLAGS_2024.txt')
#acum_df = acum_df[[col for col in acsm_to_ebas['column_order'] if col in acum_df.columns]]
#flags_acum_df = flags_acum_df[[col for col in acsm_to_ebas['flags_column_order'] if col in flags_acum_df.columns]]
acum_df.loc[:, :].to_csv(output_file1, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
flags_acum_df.loc[:, :].to_csv(output_file2, sep='\t', index=None, date_format="%Y/%m/%d %H:%M:%S")
# Run external processing application
app = rawto012.Application()
infile = output_file1
acq_err_log = output_file2
outdir = output_dir
app.process(infile, acq_err_log, outdir=outdir)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process and calibrate ACSM data for JFJ station.")
parser.add_argument('--acsm_paths', type=str, required=True, nargs=3, help="Paths to the ACSM timeseries calibrated CSV file, the error CSV file, and the calibration factors CSV file.")
parser.add_argument('--acsm_flags_path', type=str, required=True, help="Path to the ACSM flags CSV file.")
parser.add_argument(
'--month',
type=str,
help="Filter data for specific months using comma-separated values and ranges. Ex: '1,3,5-7'"
)
args = parser.parse_args()
# Load data
csv_files = args.acsm_paths # list of filenames
flags_file = args.acsm_flags_path
month = args.month
main(csv_files, flags_file, month)