Update to account for yaml file attribute renamings.

This commit is contained in:
2025-02-05 18:15:43 +01:00
parent e2b5aa9d69
commit 2c2b154528

View File

@ -1,167 +1,169 @@
import sys, os
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
import numpy as np
import pandas as pd
import argparse
import yaml, json
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
projectPath = os.path.normpath(os.path.join(dimaPath,'..'))
print(dimaPath)
sys.path.append(dimaPath)
import dima.src.hdf5_ops as dataOps
def create_flags_for_diagnostic_vars(data_table, variable_limits):
"""
Create indicator variables that check whether a particular diagnostic variable is within
pre-specified/acceptable limits, which are defined by `variable_limits`.
Parameters:
data_table (pd.DataFrame): The input data table with variables to calibrate.
variable_limits (dict): Dictionary mapping diagnostic-variables to their limits, e.g.,
{
'ABsamp': {
'lower_lim': {'value': 20000, 'description': "not specified yet"},
'upper_lim': {'value': 500000, 'description': "not specified yet"}
}
}
Returns:
pd.DataFrame: A new data table with calibrated variables, containing the original columns
and additional indicator variables, representing flags.
"""
# Initialize a dictionary to store indicator variables
indicator_variables = {}
# Loop through the column names in the data table
for diagnostic_variable in data_table.columns:
# Skip if the diagnostic variable is not in variable_limits
if diagnostic_variable not in variable_limits:
print(f'Diagnostic variable {diagnostic_variable} has not defined limits in {variable_limits}.')
continue
# Get lower and upper limits for diagnostic_variable from variable limits dict
lower_lim = variable_limits[diagnostic_variable]['lower_lim']['value']
upper_lim = variable_limits[diagnostic_variable]['upper_lim']['value']
# Create an indicator variable for the current diagnostic variable
tmp = data_table[diagnostic_variable]
indicator_variables['flag_'+diagnostic_variable] = ((tmp >= lower_lim) & (tmp <= upper_lim)).to_numpy()
# Add indicator variables to the new data table
new_data_table = pd.DataFrame(indicator_variables)
return new_data_table
# all_dat[VaporizerTemp_C >= heater_lower_lim & VaporizerTemp_C <= heater_upper_lim ,flag_heater_auto:="V"]
# all_dat[ABsamp >= AB_lower_lim & ABsamp <= AB_upper_lim ,flag_AB_auto:="V"]
# all_dat[FlowRate_ccs >= flow_lower_lim & FlowRate_ccs <= flow_upper_lim ,flag_flow_auto:="V"]
# all_dat[FilamentEmission_mA >= filament_lower_lim & FilamentEmission_mA <= filament_upper_lim ,flag_filament_auto:="V"]
if __name__ == '__main__':
# Set up argument parsing
parser = argparse.ArgumentParser(description="Calibrate species data using calibration factors.")
parser.add_argument('data_file', type=str, help="Path to the input HDF5 file containing the data table.")
parser.add_argument('dataset_name', type=str, help ='Relative path to data_table (i.e., dataset name) in HDF5 file')
parser.add_argument('calibration_file', type=str, help="Path to the input YAML file containing calibration factors.")
#parser.add_argument('output_file', type=str, help="Path to save the output calibrated data as a CSV file.")
args = parser.parse_args()
# Load input data and calibration factors
try:
#data_table = pd.read_json(args.data_file)
print(args.data_file)
dataManager = dataOps.HDF5DataOpsManager(args.data_file)
dataManager.load_file_obj()
dataset_name = '/'+args.dataset_name
data_table = dataManager.extract_dataset_as_dataframe('/'+args.dataset_name)
dataManager.extract_and_load_dataset_metadata()
dataset_metadata_df = dataManager.dataset_metadata_df.copy()
print(dataset_metadata_df.head())
dataset_name_idx = dataset_metadata_df.index[(dataset_metadata_df['dataset_name']==args.dataset_name).to_numpy()]
data_table_metadata = dataset_metadata_df.loc[dataset_name_idx,:]
parent_instrument = data_table_metadata.loc[dataset_name_idx,'parent_instrument'].values[0]
parent_file = data_table_metadata.loc[dataset_name_idx,'parent_file'].values[0]
dataManager.unload_file_obj()
print(args.calibration_file)
with open(args.calibration_file, 'r') as stream:
calibration_factors = yaml.load(stream, Loader=yaml.FullLoader)
except Exception as e:
print(f"Error loading input files: {e}")
exit(1)
path_to_output_dir, ext = os.path.splitext(args.data_file)
print('Path to output directory :', path_to_output_dir)
# Perform calibration
try:
processingScriptRelPath = os.path.relpath(thisFilePath,start=projectPath)
print(processingScriptRelPath)
metadata = {'actris_level' : 1, 'processing_script': processingScriptRelPath.replace(os.sep,'/')}
path_to_output_file, ext = os.path.splitext('/'.join([path_to_output_dir,parent_instrument,parent_file]))
path_to_calibrated_file = ''.join([path_to_output_file, '_flags.csv'])
path_tail, path_head = os.path.split(path_to_calibrated_file)
path_to_metadata_file = '/'.join([path_tail, 'data_lineage_metadata.json'])
print('Path to output file :', path_to_calibrated_file)
import dima.utils.g5505_utils as utils
import json
calibrated_table = create_flags_for_diagnostic_vars(data_table, calibration_factors)
metadata['processing_date'] = utils.created_at()
calibrated_table.to_csv(path_to_calibrated_file, index=False)
# Ensure the file exists
if not os.path.exists(path_to_metadata_file):
with open(path_to_metadata_file, 'w') as f:
json.dump({}, f) # Initialize empty JSON
# Read the existing JSON
with open(path_to_metadata_file, 'r') as metadata_file:
try:
json_dict = json.load(metadata_file)
except json.JSONDecodeError:
json_dict = {} # Start fresh if file is invalid
# Update the JSON object
outputfileRelPath = os.path.relpath(path_to_calibrated_file, start=projectPath).replace(os.sep, '/')
json_dict[outputfileRelPath] = metadata
# Write updated JSON back to the file
with open(path_to_metadata_file, 'w') as metadata_file:
json.dump(json_dict, metadata_file, indent=4)
print(f"Calibrated data saved to {path_to_calibrated_file}")
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
except Exception as e:
print(f"Error during calibration: {e}")
import sys, os
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
print("When using a terminal, make sure the working directory is set to the script's location to prevent path issues (for the DIMA submodule)")
#print("Otherwise, path to submodule DIMA may not be resolved properly.")
thisFilePath = os.getcwd() # Use current directory or specify a default
import numpy as np
import pandas as pd
import argparse
import yaml, json
dimaPath = os.path.normpath(os.path.join(thisFilePath, "..", "..",'..')) # Move up to project root
projectPath = os.path.normpath(os.path.join(dimaPath,'..'))
print(dimaPath)
sys.path.append(dimaPath)
import dima.src.hdf5_ops as dataOps
def create_flags_for_diagnostic_vars(data_table, validity_thresholds_dict):
"""
Create indicator variables that check whether a particular diagnostic variable is within
pre-specified/acceptable limits, which are defined by `variable_limits`.
Parameters:
data_table (pd.DataFrame): The input data table with variables to calibrate.
variable_limits (dict): Dictionary mapping diagnostic-variables to their limits, e.g.,
{
'ABsamp': {
'lower_lim': {'value': 20000, 'description': "not specified yet"},
'upper_lim': {'value': 500000, 'description': "not specified yet"}
}
}
Returns:
pd.DataFrame: A new data table with calibrated variables, containing the original columns
and additional indicator variables, representing flags.
"""
# Initialize a dictionary to store indicator variables
indicator_variables = {}
# Loop through the column names in the data table
for diagnostic_variable in data_table.columns:
print(diagnostic_variable)
# Skip if the diagnostic variable is not in variable_limits
if diagnostic_variable not in validity_thresholds_dict['validity_thresholds']['variables']:
print(f'Diagnostic variable {diagnostic_variable} has not defined limits in {validity_thresholds_dict}.')
continue
# Get lower and upper limits for diagnostic_variable from variable limits dict
variable_ranges = validity_thresholds_dict['validity_thresholds']['variables'][diagnostic_variable]
lower_lim = variable_ranges['lower_lim']
upper_lim = variable_ranges['upper_lim']
# Create an indicator variable for the current diagnostic variable
tmp = data_table[diagnostic_variable]
indicator_variables['flag_'+diagnostic_variable] = ((tmp >= lower_lim) & (tmp <= upper_lim)).to_numpy()
# Add indicator variables to the new data table
new_data_table = pd.DataFrame(indicator_variables)
return new_data_table
# all_dat[VaporizerTemp_C >= heater_lower_lim & VaporizerTemp_C <= heater_upper_lim ,flag_heater_auto:="V"]
# all_dat[ABsamp >= AB_lower_lim & ABsamp <= AB_upper_lim ,flag_AB_auto:="V"]
# all_dat[FlowRate_ccs >= flow_lower_lim & FlowRate_ccs <= flow_upper_lim ,flag_flow_auto:="V"]
# all_dat[FilamentEmission_mA >= filament_lower_lim & FilamentEmission_mA <= filament_upper_lim ,flag_filament_auto:="V"]
if __name__ == '__main__':
# Set up argument parsing
parser = argparse.ArgumentParser(description="Calibrate species data using calibration factors.")
parser.add_argument('data_file', type=str, help="Path to the input HDF5 file containing the data table.")
parser.add_argument('dataset_name', type=str, help ='Relative path to data_table (i.e., dataset name) in HDF5 file')
parser.add_argument('calibration_file', type=str, help="Path to the input YAML file containing calibration factors.")
#parser.add_argument('output_file', type=str, help="Path to save the output calibrated data as a CSV file.")
args = parser.parse_args()
# Load input data and calibration factors
try:
#data_table = pd.read_json(args.data_file)
print(args.data_file)
dataManager = dataOps.HDF5DataOpsManager(args.data_file)
dataManager.load_file_obj()
dataset_name = '/'+args.dataset_name
data_table = dataManager.extract_dataset_as_dataframe('/'+args.dataset_name)
dataManager.extract_and_load_dataset_metadata()
dataset_metadata_df = dataManager.dataset_metadata_df.copy()
print(dataset_metadata_df.head())
dataset_name_idx = dataset_metadata_df.index[(dataset_metadata_df['dataset_name']==args.dataset_name).to_numpy()]
data_table_metadata = dataset_metadata_df.loc[dataset_name_idx,:]
parent_instrument = data_table_metadata.loc[dataset_name_idx,'parent_instrument'].values[0]
parent_file = data_table_metadata.loc[dataset_name_idx,'parent_file'].values[0]
dataManager.unload_file_obj()
print(args.calibration_file)
with open(args.calibration_file, 'r') as stream:
calibration_factors = yaml.load(stream, Loader=yaml.FullLoader)
except Exception as e:
print(f"Error loading input files: {e}")
exit(1)
path_to_output_dir, ext = os.path.splitext(args.data_file)
print('Path to output directory :', path_to_output_dir)
# Perform calibration
try:
processingScriptRelPath = os.path.relpath(thisFilePath,start=projectPath)
print(processingScriptRelPath)
metadata = {'actris_level' : 1, 'processing_script': processingScriptRelPath.replace(os.sep,'/')}
path_to_output_file, ext = os.path.splitext('/'.join([path_to_output_dir,parent_instrument,parent_file]))
path_to_calibrated_file = ''.join([path_to_output_file, '_flags.csv'])
path_tail, path_head = os.path.split(path_to_calibrated_file)
path_to_metadata_file = '/'.join([path_tail, 'data_lineage_metadata.json'])
print('Path to output file :', path_to_calibrated_file)
import dima.utils.g5505_utils as utils
import json
print(calibration_factors.keys())
calibrated_table = create_flags_for_diagnostic_vars(data_table, calibration_factors)
metadata['processing_date'] = utils.created_at()
calibrated_table.to_csv(path_to_calibrated_file, index=False)
# Ensure the file exists
if not os.path.exists(path_to_metadata_file):
with open(path_to_metadata_file, 'w') as f:
json.dump({}, f) # Initialize empty JSON
# Read the existing JSON
with open(path_to_metadata_file, 'r') as metadata_file:
try:
json_dict = json.load(metadata_file)
except json.JSONDecodeError:
json_dict = {} # Start fresh if file is invalid
# Update the JSON object
outputfileRelPath = os.path.relpath(path_to_calibrated_file, start=projectPath).replace(os.sep, '/')
json_dict[outputfileRelPath] = metadata
# Write updated JSON back to the file
with open(path_to_metadata_file, 'w') as metadata_file:
json.dump(json_dict, metadata_file, indent=4)
print(f"Calibrated data saved to {path_to_calibrated_file}")
print(f"Metadata for calibrated data saved to {path_to_metadata_file}")
except Exception as e:
print(f"Error during calibration: {e}")
exit(1)