Refactor steps to collect information for renku workflow file generation

This commit is contained in:
2025-06-06 17:02:13 +02:00
parent a4847f0071
commit 160791b738
6 changed files with 347 additions and 169 deletions

View File

@ -19,8 +19,8 @@ For Windows users, the following are required:
Open **Git Bash** and run:
```bash
cd GitLab
git clone --recurse-submodules https://gitlab.psi.ch/apog/acsmnode.git
cd Gitea
git clone --recurse-submodules https://gitea.psi.ch/apog/acsmnode.git
cd acsmnode
```

View File

@ -199,9 +199,22 @@ def apply_calibration_factors(data_table, datetime_var_name, calibration_factors
return calibration_factor_table, new_data_table
def main(data_file, calibration_file):
from workflows.utils import RenkuWorkflowBuilder
def main(data_file, calibration_file, capture_renku_metadata = False, workflow_name = 'apply_calibration_workflow'):
"""Main function for processing the data with calibration."""
#-----------Gather Renku Workflow File Information -------------------------
inputs = []
outputs = []
parameters = []
# Collect input and parameters for renku workflow file
#inputs.append(('script.py',{'path' : os.path.relpath(__file__, start=os.getcwd())}))
inputs.append(('script_py',{'path' : os.path.relpath(__file__, start=projectPath)}))
inputs.append(('campaign_data_h5',{'path' : os.path.relpath(data_file, start=projectPath)}))
inputs.append(('calib_yaml',{'path' : os.path.relpath(calibration_file, start=projectPath)}))
inputs.append(('data_descriptor_yaml',{'path' : os.path.relpath(os.path.join(projectPath,'campaignDescriptor.yaml'), start=projectPath),
'implicit' : True}))
# ---------------------------------------------------------------------------
# Load input data and calibration factors
try:
print(f"Opening data file: {data_file} using src.hdf5_ops.HDF5DataOpsManager().")
@ -262,7 +275,7 @@ def main(data_file, calibration_file):
# Apply calibration factors to input data_table and generate data lineage metadata
calibration_factor_table, calibrated_table = apply_calibration_factors(data_table, datetime_var, calibration_file)
calibrated_table_err = generate_error_dataframe(calibrated_table, datetime_var)
# Define suffix to output table pairs.
suffix_to_dataframe_dict = {
'calibrated.csv': calibrated_table,
'calibrated_err.csv': calibrated_table_err,
@ -280,23 +293,38 @@ def main(data_file, calibration_file):
filename, _ = os.path.splitext(parent_file)
if not _:
filename += '.csv'
cnt = 1
for suffix, data_table in suffix_to_dataframe_dict.items():
path_to_output_file = os.path.join(path_to_output_folder, f'{filename}_{suffix}')
try:
data_table.to_csv(path_to_output_file, index=False)
print(f"Saved {filename}_{suffix} to {path_to_output_folder}")
outputs.append((f'out_{cnt}', {'path' : os.path.relpath(path_to_output_file, start=projectPath),'implicit' : True}))
cnt += 1
except Exception as e:
print(f"Failed to save {path_to_output_file} due to: {e}")
continue
#continue
return
# Record data lineage
metadata['suffix'] = suffix
stepUtils.record_data_lineage(path_to_output_file, os.getcwd(), metadata)
# ---------------- Start Renku Workflow file generation ------------------------------------------------------------------------
if capture_renku_metadata:
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(step_name='apply_calibration_factors',
base_command="python",
inputs=inputs,
outputs=outputs,
parameters=parameters)
workflowfile_builder.save_to_file(os.path.join(projectPath,'workflows')) # Will merge or create workflows/data-pipeline.yaml
return 0
except Exception as e:
print(f"Error during calibration: {e}")
exit(1)
return
if __name__ == '__main__':
# Set up argument parsing

View File

@ -335,9 +335,15 @@ def generate_species_flags(data_table : pd.DataFrame, calib_param_dict : dict, f
# all_dat[FlowRate_ccs >= flow_lower_lim & FlowRate_ccs <= flow_upper_lim ,flag_flow_auto:="V"]
# all_dat[FilamentEmission_mA >= filament_lower_lim & FilamentEmission_mA <= filament_upper_lim ,flag_filament_auto:="V"]
def main(data_file, flag_type):
# Open data file and load dataset associated with flag_type : either diagnostics or species
def main(data_file, flag_type, capture_renku_metadata=False, workflow_name='generate_flags_workflow'):
inputs = []
outputs = []
parameters = []
try:
# Load data and locate relevant dataset
dataManager = dataOps.HDF5DataOpsManager(data_file)
dataManager.load_file_obj()
@ -347,28 +353,24 @@ def main(data_file, flag_type):
print(f'Invalid data file: {data_file}. Missing instrument folder ACSM_TOFWARE.')
raise ImportError(f'Instrument folder "/ACSM_TOFWARE" not found in data_file : {data_file}')
dataManager.extract_and_load_dataset_metadata()
dataset_metadata_df = dataManager.dataset_metadata_df.copy()
STATION_ABBR = load_project_yaml_files(projectPath,'campaignDescriptor.yaml')['station_abbr']
# Find dataset associated with diagnostic channels
# Find dataset associated with flag_type
if flag_type == 'diagnostics':
keywords = [f'ACSM_{STATION_ABBR}_','_meta.txt/data_table']
find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']]
keywords = [f'ACSM_{STATION_ABBR}_','_meta.txt/data_table']
elif flag_type == 'species':
keywords = [f'ACSM_{STATION_ABBR}_','_timeseries.txt/data_table']
elif flag_type == 'cpc':
keywords = ['cpc.particle_number_concentration.aerosol.', f'CH02L_TSI_3772_{STATION_ABBR}.CH02L_CPC.lev1.nas']
else:
raise ValueError(f"Unsupported flag_type: {flag_type}")
if flag_type == 'species':
keywords = [f'ACSM_{STATION_ABBR}_','_timeseries.txt/data_table']
find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']]
if flag_type == 'cpc':
keywords = ['cpc.particle_number_concentration.aerosol.', f'CH02L_TSI_3772_{STATION_ABBR}.CH02L_CPC.lev1.nas']
find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']]
# Specify source dataset to be extracted from input hdf5 data file
find_keyword = [all(keyword in item for keyword in keywords) for item in dataset_metadata_df['dataset_name']]
columns = ['dataset_name','parent_file','parent_instrument']
dataset_name, parent_file, parent_instrument = tuple(dataset_metadata_df.loc[find_keyword,col] for col in columns)
print(':)')
dataset_name, parent_file, parent_instrument = tuple(dataset_metadata_df.loc[find_keyword,col] for col in columns)
if not (dataset_name.size == 1):
raise ValueError(f'{flag_type} file is not uniquely identifiable: {parent_file}')
else:
@ -376,45 +378,35 @@ def main(data_file, flag_type):
parent_file = parent_file.values[0]
parent_instrument = parent_instrument.values[0]
# Extract data and timestamp
data_table = dataManager.extract_dataset_as_dataframe(dataset_name)
datetime_var, datetime_var_format = dataManager.infer_datetime_variable(dataset_name)
dataManager.unload_file_obj()
# Count the number of NaT (null) values
# Report missing timestamps
num_nats = data_table[datetime_var].isna().sum()
# Get the total number of rows
total_rows = len(data_table)
# Calculate the percentage of NaT values
percentage_nats = (num_nats / total_rows) * 100
print(f"Total rows: {total_rows}")
print(f"NaT (missing) values: {num_nats}")
print(f"Percentage of data loss: {percentage_nats:.4f}%")
dataManager.unload_file_obj()
except Exception as e:
except Exception as e:
print(f"Error loading input files: {e}")
exit(1)
finally:
dataManager.unload_file_obj()
return 1
print('Starting flag generation.')
try:
path_to_output_dir, ext = os.path.splitext(data_file)
print('Path to output directory :', path_to_output_dir)
# Define output directory of apply_calibration_factors() step
suffix = 'flags'
if len(parent_instrument.split('/')) >= 2:
instFolder = parent_instrument.split('/')[0]
category = parent_instrument.split('/')[1]
else:
instFolder = parent_instrument.split('/')[0]
category = ''
path_to_output_folder, ext = os.path.splitext('/'.join([path_to_output_dir,f'{instFolder}_{suffix}',category]))
processingScriptRelPath = os.path.relpath(thisFilePath,start=projectPath)
# Parse folder/category from instrument
parts = parent_instrument.split('/')
instFolder = parts[0]
category = parts[1] if len(parts) >= 2 else ''
path_to_output_folder = os.path.splitext('/'.join([path_to_output_dir,f'{instFolder}_{suffix}',category]))[0]
processingScriptRelPath = os.path.relpath(thisFilePath, start=projectPath)
if not os.path.exists(path_to_output_folder):
os.makedirs(path_to_output_folder)
@ -422,47 +414,115 @@ def main(data_file, flag_type):
print('Processing script:', processingScriptRelPath)
print('Output directory:', path_to_output_folder)
# Compute diagnostic flags based on validity thresholds defined in configuration_file_dict
# Flagging logic
if flag_type == 'diagnostics':
#validity_thresholds_dict = load_parameters(flag_type)
validity_thresholds_dict = load_project_yaml_files(projectPath, "validity_thresholds.yaml")
flags_table = generate_diagnostic_flags(data_table, validity_thresholds_dict)
if flag_type == 'species':
#calib_param_dict = load_parameters(flag_type)
calib_param_dict = load_project_yaml_files(projectPath, "calibration_params.yaml")
flags_table = generate_species_flags(data_table,calib_param_dict,path_to_output_folder,datetime_var)
if flag_type == 'cpc':
print(':D')
flags_table = generate_diagnostic_flags(data_table, validity_thresholds_dict)
elif flag_type == 'species':
calib_param_dict = load_project_yaml_files(projectPath, "calibration_params.yaml")
flags_table = generate_species_flags(data_table, calib_param_dict, path_to_output_folder, datetime_var)
elif flag_type == 'cpc':
flags_table = generate_cpc_flags(data_table, datetime_var)
metadata = {'actris_level' : 1,
# Metadata for lineage
metadata = {
'actris_level' : 1,
'processing_script': processingScriptRelPath.replace(os.sep,'/'),
'processing_date' : utils.created_at(),
'flag_type' : flag_type,
'datetime_var': datetime_var
}
# Save output tables to csv file and save/or update data lineage record
}
filename, ext = os.path.splitext(parent_file)
path_to_flags_file = '/'.join([path_to_output_folder, f'{filename}_flags.csv'])
#path_to_calibration_factors_file = '/'.join([path_to_output_folder, f'{filename}_calibration_factors.csv'])
flags_table.to_csv(path_to_flags_file, index=False)
# Save output and record lineage
flags_table.to_csv(path_to_flags_file, index=False)
status = stepUtils.record_data_lineage(path_to_flags_file, projectPath, metadata)
print(f"Flags saved to {path_to_flags_file}")
print(f"Data lineage saved to {path_to_output_folder}")
#flags_table.to_csv(path_to_flags_file, index=False)
# Read json and assign numeric flag to column
except Exception as e:
print(f"Error during calibration: {e}")
exit(1)
print(f"Error during flag generation: {e}")
return 1
# --------------------- Renku Metadata Collection ----------------------------
if capture_renku_metadata:
from workflows.utils import RenkuWorkflowBuilder
inputs.append(("script_py", {'path': os.path.relpath(thisFilePath, start=projectPath)}))
inputs.append(("data_file", {'path': os.path.relpath(data_file, start=projectPath)}))
# Parameter
parameters.append(("flag_type", {'value': flag_type}))
# Add implicit YAML config
if flag_type == 'diagnostics':
inputs.append(("validity_thresholds_yaml", {
'path': os.path.relpath(os.path.join(projectPath, "pipelines/params/validity_thresholds.yaml"), start=projectPath),
'implicit': True
}))
elif flag_type == 'species':
inputs.append(("calibration_params_yaml", {
'path': os.path.relpath(os.path.join(projectPath, "pipelines/params/calibration_params.yaml"), start=projectPath),
'implicit': True
}))
# Add CSV and JSON flags from flags folder as implicit inputs
flag_index = 0
for fname in os.listdir(path_to_output_folder):
full_path = os.path.join(path_to_output_folder, fname)
# Skip the output file to avoid circular dependency
if os.path.abspath(full_path) == os.path.abspath(path_to_flags_file):
continue
rel_flag_path = os.path.relpath(full_path, start=projectPath)
if fname.endswith('.csv') or (fname.endswith('.json') and 'metadata' not in fname):
inputs.append((f"flag_in_{flag_index}", {
'description': 'manual flag by domain expert' if fname.endswith('.json') else 'automated or cpc flag',
'path': rel_flag_path,
'implicit': True
}))
flag_index += 1
#elif flag_type == 'cpc':
# CPC may require logic like species if any dependencies are found
# for fname in os.listdir(path_to_output_folder):
# rel_flag_path = os.path.relpath(os.path.join(path_to_output_folder, fname), start=projectPath)
# if fname.endswith('.nas') and ('cpc' in fname):
# inputs.append((f"flag_{fname}", {
# 'path': rel_flag_path,
# 'implicit': True
# }))
# Output
outputs.append(("flags_csv", {
'path': os.path.relpath(path_to_flags_file, start=projectPath),
'implicit': True
}))
# Define workflow step
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(
step_name=f"generate_flags_{flag_type}",
base_command="python",
inputs=inputs,
outputs=outputs,
parameters=parameters
)
workflowfile_builder.save_to_file(os.path.join(projectPath, 'workflows'))
return 0
def get_flags_from_folder(flagsFolderPath):

View File

@ -102,7 +102,13 @@ def parse_months(month_str: str) -> list:
return sorted(months)
def main(paths_to_processed_files : list, path_to_flags : str, month : int = None):
def main(paths_to_processed_files : list, path_to_flags : str, month : str = None, capture_renku_metadata: bool = False, workflow_name: str = "ebas_submission_worflow"):
inputs = []
outputs = []
parameters = []
# Set up argument parsing
acum_df = join_tables(paths_to_processed_files)
@ -213,6 +219,36 @@ def main(paths_to_processed_files : list, path_to_flags : str, month : int = Non
outdir = output_dir
app.process(infile, acq_err_log, outdir=outdir)
# ------------------- Renku Metadata Collection ------------------------
if capture_renku_metadata:
from workflows.utils import RenkuWorkflowBuilder
inputs.append(("script_py", {'path': os.path.relpath(thisFilePath, start=projectPath)}))
for idx, path in enumerate(paths_to_processed_files + [path_to_flags]):
inputs.append((f"in_{idx+1}", {'path': os.path.relpath(path, start=projectPath)}))
inputs.append(('lod', {'path': os.path.relpath(os.path.join(projectPath,'pipelines/params/"limits_of_detection.yaml'), start=projectPath),'implicit': True}))
inputs.append(('station', {'path': os.path.relpath(os.path.join(projectPath,'pipelines/params/"station_params.yaml'), start=projectPath),'implicit': True}))
outputs.append(("out_1", {'path': os.path.relpath(output_file1, start=projectPath), 'implicit': True}))
outputs.append(("out_2", {'path': os.path.relpath(output_file2, start=projectPath), 'implicit': True}))
if month is not None:
parameters.append(("month_range", {'value': month}))
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(
step_name=f"{workflow_name}_step",
base_command="python",
inputs=inputs,
outputs=outputs,
parameters=parameters
)
workflowfile_builder.save_to_file(os.path.join(projectPath, 'workflows'))
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Process and calibrate ACSM data for JFJ station.")

View File

@ -89,10 +89,26 @@ def sync_yaml_files(src_filepath, dest_filepath):
with open(dest_filepath, 'w') as dest_file:
yaml.safe_dump(dest_yaml, dest_file, default_flow_style=False)
print(f"Synchronized: {os.path.basename(src_filepath)}")
return 0
else:
print(f"Structures do not match for {os.path.basename(src_filepath)}. Skipping synchronization.")
return
def main(path_to_data_file, instrument_folder):
from workflows.utils import RenkuWorkflowBuilder
def main(path_to_data_file, instrument_folder, capture_renku_metadata = False, workflow_name='parameter_update_workflow'):
inputs = []
outputs = []
parameters = []
# Collect input and parameters for renku workflow file
#inputs.append(('script.py',{'path' : os.path.relpath(__file__, start=os.getcwd())}))
inputs.append(('script_py',{'path' : os.path.relpath(__file__, start=projectPath)}))
inputs.append(('campaign_data_h5',{'path' : os.path.relpath(path_to_data_file, start=projectPath)}))
parameters.append(('instrument_folder', {'value':instrument_folder}))
src_folder = os.path.normpath(os.path.join(os.path.splitext(path_to_data_file)[0],instrument_folder))
@ -115,16 +131,36 @@ def main(path_to_data_file, instrument_folder):
# Get list of files in source folder.
# We assume we only need to process .yaml files.
src_folder = os.path.normpath(os.path.join(src_folder,'params'))
cnt = 1
for filename in os.listdir(src_folder):
if filename.endswith(".yaml"):
src_filepath = os.path.join(src_folder, filename)
dest_filepath = os.path.join(dest_folder, filename)
src_filepath = os.path.normpath(os.path.join(src_folder, filename))
dest_filepath = os.path.normpath(os.path.join(dest_folder, filename))
# Proceed only if the destination file exists.
if os.path.exists(dest_filepath):
sync_yaml_files(src_filepath, dest_filepath)
status = sync_yaml_files(src_filepath, dest_filepath)
else:
print(f"Destination YAML file not found for: {filename}")
# If yaml file synchronization successful add input output pair
if status==0:
inputs.append((f'in_{cnt}',{'path':os.path.relpath(src_filepath, start=projectPath),'implicit': True}))
outputs.append((f'out_{cnt}',{'path':os.path.relpath(dest_filepath, start=projectPath),'implicit': True}))
cnt += 1
# ---------------- Start Renku Workflow file generation ------------------------------------------------------------------------
if capture_renku_metadata:
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(step_name='update_datachain_params',
base_command="python",
inputs=inputs,
outputs=outputs,
parameters = parameters)
workflowfile_builder.save_to_file(os.path.join(projectPath,'workflows')) # Will merge or create workflows/data-pipeline.yaml
return 0
if __name__ == "__main__":
@ -144,5 +180,3 @@ if __name__ == "__main__":
instrument_folder = args.instrument_folder
main(path_to_data_file, instrument_folder)

View File

@ -1,16 +1,34 @@
import os
import sys
import yaml
import argparse
try:
thisFilePath = os.path.abspath(__file__)
print(thisFilePath)
except NameError:
print("[Notice] The __file__ attribute is unavailable in this environment (e.g., Jupyter or IDLE).")
thisFilePath = os.getcwd()
projectPath = os.path.normpath(os.path.join(thisFilePath, "..", "..", '..'))
if projectPath not in sys.path:
sys.path.insert(0, projectPath)
import dima.src.hdf5_ops as dataOps
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import plotly.graph_objects as go
def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name, x_var, y_vars, yaxis_range_dict = {'FlowRate_ccs' : [0,100]}):
def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name, x_var, y_vars,
yaxis_range_dict={'FlowRate_ccs': [0, 100]},
capture_renku_metadata=False,
workflow_name="visualize_table_variables"):
if not os.path.exists(data_file_path):
if not os.path.exists(data_file_path):
raise ValueError(f"Path to input file {data_file_path} does not exists. The parameter 'data_file_path' must be a valid path to a suitable HDF5 file. ")
APPEND_DIR = os.path.splitext(data_file_path)[0]
if not os.path.exists(APPEND_DIR):
APPEND_DIR = None
@ -19,81 +37,55 @@ def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name,
dataManager = dataOps.HDF5DataOpsManager(data_file_path)
try:
# Load the dataset
dataManager.load_file_obj()
dataset_df = dataManager.extract_dataset_as_dataframe(dataset_name)
except Exception as e:
print(f"Exception occurred while loading dataset: {e}")
finally:
# Unload file object to free resources
dataManager.unload_file_obj()
# Flags dataset loading and processing
try:
# Re-load the file for flags dataset
dataManager.load_file_obj()
flags_df = dataManager.extract_dataset_as_dataframe(flags_dataset_name)
# Ensure the time variable exists in both datasets
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
# Convert the x_var column to datetime in flags_df
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x.decode(encoding="utf-8")))
except Exception as e:
dataManager.unload_file_obj()
# If loading from the file fails, attempt alternative path
if APPEND_DIR:
# Remove 'data_table' part from the path for alternate location
if 'data_table' in flags_dataset_name:
flags_dataset_name_parts = flags_dataset_name.split(sep='/')
flags_dataset_name_parts.remove('data_table')
# Remove existing extension and append .csv
base_path = os.path.join(APPEND_DIR, '/'.join(flags_dataset_name_parts))
alternative_path = os.path.splitext(base_path)[0] + '_flags.csv'
# Attempt to read CSV
if not os.path.exists(alternative_path):
raise FileNotFoundError(
f"File not found at {alternative_path}. Ensure there are flags associated with {data_file_path}."
)
flags_df = pd.read_csv(alternative_path)
# Ensure the time variable exists in both datasets
if x_var not in dataset_df.columns and x_var not in flags_df.columns:
raise ValueError(f"Invalid x_var: {x_var}. x_var must exist in both {dataset_name} and {flags_dataset_name}.")
# Apply datetime conversion on the x_var column in flags_df
flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x: x))
finally:
# Ensure file object is unloaded after use
dataManager.unload_file_obj()
#if x_var not in dataset_df.columns and x_var not in flags_df.columns:
# raise ValueError(f'Invalid x_var : {x_var}. x_var must refer to a time variable name that is both in {dataset_name} and {flags_dataset_name}')
#flags_df[x_var] = pd.to_datetime(flags_df[x_var].apply(lambda x : x.decode(encoding="utf-8")))
#dataManager.unload_file_obj()
if not all(var in dataset_df.columns for var in y_vars):
raise ValueError(f'Invalid y_vars : {y_vars}. y_vars must be a subset of {dataset_df.columns}.')
#fig, ax = plt.subplots(len(y_vars), 1, figsize=(12, 5))
figs = []
output_paths = []
figures_dir = os.path.join(projectPath, "figures")
os.makedirs(figures_dir, exist_ok=True)
figs = [] # store each figure
for var_idx, var in enumerate(y_vars):
#y = dataset_df[var].to_numpy()
# Plot Flow Rate
#fig = plt.figure(var_idx,figsize=(12, 2.5))
#ax = plt.gca()
#ax.plot(dataset_df[x_var], dataset_df[var], label=var, alpha=0.8, color='tab:blue')
fig = go.Figure()
# Main line plot
fig.add_trace(go.Scatter(
x=dataset_df[x_var],
y=dataset_df[var],
@ -102,40 +94,24 @@ def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name,
line=dict(color='blue'),
opacity=0.8
))
# Specify flag name associated with var name in y_vars. By construction, it is assumed the name satisfy the following sufix convention.
var_flag_name = f"flag_{var}"
if var_flag_name in flags_df.columns:
# Identify valid and invalid indices
var_flag_name = f"flag_{var}"
if var_flag_name in flags_df.columns:
ind_invalid = flags_df[var_flag_name].to_numpy()
# ind_valid = np.logical_not(ind_valid)
# Detect start and end indices of invalid regions
# Find transition points in invalid regions
invalid_starts = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][::2]
invalid_ends = np.diff(np.concatenate(([False], ind_invalid, [False]))).nonzero()[0][1::2]
t_base = dataset_df[x_var]
# Fill invalid regions
t_base = dataset_df[x_var] #.to_numpy()
y_min, y_max = dataset_df[var].min(), dataset_df[var].max()
max_idx = len(t_base) - 1 # maximum valid index
max_idx = len(t_base) - 1
for start, end in zip(invalid_starts, invalid_ends):
if start >= end:
print(f"Warning: Skipping invalid interval — start ({start}) >= end ({end})")
continue # Clip start and end to valid index range
continue
start = max(0, start)
end = min(end, max_idx)
#ax.fill_betweenx([dataset_df[var].min(), dataset_df[var].max()], t_base[start], t_base[end],
# color='red', alpha=0.3, label="Invalid Data" if start == invalid_starts[0] else "")
# start = max(0, start)
fig.add_shape(
type="rect",
x0=t_base[start], x1=t_base[end],
@ -145,7 +121,7 @@ def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name,
line_width=0,
layer="below"
)
# Add a dummy invisible trace just for the legend
fig.add_trace(go.Scatter(
x=[None], y=[None],
mode='markers',
@ -153,41 +129,85 @@ def visualize_table_variables(data_file_path, dataset_name, flags_dataset_name,
name='Invalid Region'
))
# Labels and Legends
#ax.set_xlabel(x_var)
#ax.set_ylabel(var)
#ax.legend()
#ax.grid(True)
#plt.tight_layout()
#plt.show()
#return fig, ax
if var in yaxis_range_dict:
y_axis_range = yaxis_range_dict[var]
else:
y_axis_range = [dataset_df[var].min(), dataset_df[var].max()]
print('y axis range:',y_axis_range)
# Add layout
fig.update_layout(
title=f"{var} over {x_var}",
xaxis_title=x_var,
yaxis_title=var,
xaxis_range = [t_base.min(), t_base.max()],
yaxis_range = y_axis_range,
showlegend=True,
height=300,
margin=dict(l=40, r=20, t=40, b=40),
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
fig.show()
fig.update_layout(
title=f"{var} over {x_var}",
xaxis_title=x_var,
yaxis_title=var,
xaxis_range=[t_base.min(), t_base.max()],
yaxis_range=y_axis_range,
showlegend=True,
height=300,
margin=dict(l=40, r=20, t=40, b=40),
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1)
)
fig_path = os.path.join(figures_dir, f"fig_{var_idx}_{var}.html")
fig.write_html(fig_path)
output_paths.append(fig_path)
figs.append(fig)
# Optionally return figs if needed
return figs
# Display figure in notebook
fig.show()
inputs = []
outputs = []
parameters = []
if capture_renku_metadata:
from workflows.utils import RenkuWorkflowBuilder
inputs.append(("script_py", {'path': os.path.relpath(thisFilePath, start=projectPath)}))
inputs.append(("data_file", {'path': os.path.relpath(data_file_path, start=projectPath)}))
# Track alternative path if used
if 'alternative_path' in locals():
inputs.append(("alternative_flags_csv", {
'path': os.path.relpath(alternative_path, start=projectPath),
'implicit' : True
}))
for fig_path in output_paths:
outputs.append((os.path.splitext(os.path.basename(fig_path))[0],
{'path': os.path.relpath(fig_path, start=projectPath)}))
parameters.append(("dataset_name", {'value': dataset_name}))
parameters.append(("flags_dataset_name", {'value': flags_dataset_name}))
parameters.append(("x_var", {'value': x_var}))
parameters.append(("y_vars", {'value': y_vars}))
workflowfile_builder = RenkuWorkflowBuilder(name=workflow_name)
workflowfile_builder.add_step(
step_name=workflow_name,
base_command="python",
inputs=inputs,
outputs=outputs,
parameters=parameters
)
workflowfile_builder.save_to_file(os.path.join(projectPath, 'workflows'))
return 0
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="Visualize table variables and associated flags.")
parser.add_argument("data_file_path", type=str, help="Path to HDF5 file")
parser.add_argument("dataset_name", type=str, help="Dataset name in HDF5 file")
parser.add_argument("flags_dataset_name", type=str, help="Flags dataset name")
parser.add_argument("x_var", type=str, help="Time variable (x-axis)")
parser.add_argument("y_vars", nargs='+', help="List of y-axis variable names")
parser.add_argument("--capture_renku_metadata", action="store_true", help="Flag to capture Renku workflow metadata")
args = parser.parse_args()
visualize_table_variables(
data_file_path=args.data_file_path,
dataset_name=args.dataset_name,
flags_dataset_name=args.flags_dataset_name,
x_var=args.x_var,
y_vars=args.y_vars,
capture_renku_metadata=args.capture_renku_metadata
)