Files
dima/hdf5_lib.py

106 lines
4.1 KiB
Python

import pandas as pd
import h5py
#import os
import sys
import numpy as np
def is_wrapped(value):
"""returns True if value is contained in a 1 by 1 array, or False otherwise."""
if not isinstance(value,np.ndarray):
return False
elif sum(value.shape)==2:
return True
else:
return False
def read_hdf5_as_dataframe(filename):
with h5py.File(filename,'r') as file:
# Define group's attributes and datasets. This should hold
# for all groups. TODO: implement verification and noncompliance error if needed.
group_list = list(file.keys())
group_attrs = list(file[group_list[0]].attrs.keys())
#
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
group_datasets = list(file[group_list[0]].keys())
#
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
# Define data_frame as group_attrs + group_datasets
#pd_series_index = group_attrs + group_datasets
pd_series_index = column_attr_names + column_dataset_names
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
for group_key in group_list:
# Print group_name
#print(group_key)
tmp_row = []
for attr_key in group_attrs:
#print(type(file[group_key].attrs[attr_key]))
df_entry = file[group_key].attrs[attr_key][()]
tmp_row.append(df_entry)
for ds_key in group_datasets:
# Check dataset's type by uncommenting the line below
# print(type(file[group_key][ds_key][()]))
# Append to list the value of the file at dataset /group/ds
#tmp_row.append(file[group_key][ds_key][()])
#tmp_row.append(file[group_key+'/'+ds_key][()])
tmp_row.append(file[group_key+'/'+ds_key][()])
# Create pandas Series/measurement
row = pd.Series(data=tmp_row,index=pd_series_index, name = group_key)
output_dataframe.loc[group_key,:] = row
return output_dataframe
def read_hdf5_as_dataframe_v2(filename):
"""contructs dataframe by filling out entries columnwise. This way we can ensure homogenous data columns"""
with h5py.File(filename,'r') as file:
# Define group's attributes and datasets. This should hold
# for all groups. TODO: implement verification and noncompliance error if needed.
group_list = list(file.keys())
group_attrs = list(file[group_list[0]].attrs.keys())
#
column_attr_names = [item[item.find('_')+1::] for item in group_attrs]
column_attr_names_idx = [int(item[4:(item.find('_'))]) for item in group_attrs]
group_datasets = list(file[group_list[0]].keys()) if not 'DS_EMPTY' in file[group_list[0]].keys() else []
#
column_dataset_names = [file[group_list[0]][item].attrs['column_name'] for item in group_datasets]
column_dataset_names_idx = [int(item[2:]) for item in group_datasets]
# Define data_frame as group_attrs + group_datasets
#pd_series_index = group_attrs + group_datasets
pd_series_index = column_attr_names + column_dataset_names
output_dataframe = pd.DataFrame(columns=pd_series_index,index=group_list)
tmp_col = []
for meas_prop in group_attrs + group_datasets:
if meas_prop in group_attrs:
column_label = meas_prop[meas_prop.find('_')+1:]
tmp_col = [file[group_key].attrs[meas_prop][()][0] for group_key in group_list]
else:
column_label = file[group_list[0] + '/' + meas_prop].attrs['column_name']
tmp_col = [file[group_key + '/' + meas_prop][()][0] for group_key in group_list]
output_dataframe.loc[:,column_label] = tmp_col
return output_dataframe