Implemented a data extraction module to access data from an hdf5 file in the form of dataframes.

This commit is contained in:
2024-06-11 10:38:04 +02:00
parent a410bde23e
commit e7ed6145f0

View File

@ -2,45 +2,46 @@ import h5py
import pandas as pd
import numpy as np
import os
import src.hdf5_vis as hdf5_vis
def read_dataset_as_dataframe(hdf, dataset_name):
dataset = hdf[dataset_name]
data = np.empty(dataset.shape, dtype=dataset.dtype)
dataset.read_direct(data)
df = pd.DataFrame(data)
if 'categorical' in dataset_name:
# Assuming all entries are byte strings encoded with utf-8
for column_name in df.columns:
df[column_name] = df[column_name].str.decode('utf-8')
# Assuming there's a 'timestamps' column that needs to be converted to datetime
if 'timestamps' in df.columns:
df['timestamps'] = pd.to_datetime(df['timestamps'],yearfirst=True)
elif 'numerical' in dataset_name:
df = df.apply(pd.to_numeric)
def read_dataset_from_hdf5file(hdf5_file_path, dataset_path):
# Open the HDF5 file
with h5py.File(hdf5_file_path, 'r') as hdf:
# Load the dataset
dataset = hdf[dataset_path]
data = np.empty(dataset.shape, dtype=dataset.dtype)
dataset.read_direct(data)
df = pd.DataFrame(data)
for col_name in df.select_dtypes(exclude='number'):
df[col_name] = df[col_name].str.decode('utf-8') #apply(lambda x: x.decode('utf-8') if isinstance(x,bytes) else x)
## Extract metadata (attributes) and convert to a dictionary
#metadata = hdf5_vis.construct_attributes_dict(hdf[dataset_name].attrs)
## Create a one-row DataFrame with the metadata
#metadata_df = pd.DataFrame.from_dict(data, orient='columns')
return df
def extract_filename(dataset_name_path):
def read_metadata_from_hdf5obj(hdf5_file_path, obj_path):
# TODO: Complete this function
metadata_df = pd.DataFrame.empty()
return metadata_df
tmp = dataset_name_path.split('/')
return tmp[len(tmp)-2]
def list_datasets(hdf5_filename_path):
def list_datasets_in_hdf5file(hdf5_file_path):
def get_datasets(name, obj, list_of_datasets):
if isinstance(obj,h5py.Dataset):
list_of_datasets.append(name)
head, tail = os.path.split(name)
print(f'Adding dataset: tail: {head} head: {tail}')
#print(f'Adding dataset: {name}') #tail: {head} head: {tail}')
with h5py.File(hdf5_filename_path,'r') as file:
with h5py.File(hdf5_file_path,'r') as file:
list_of_datasets = []
file.visititems(lambda name, obj: get_datasets(name, obj, list_of_datasets))
dataset_df = pd.DataFrame({'dataset_name':list_of_datasets})
return list_of_datasets
dataset_df['parent_instrument'] = dataset_df['dataset_name'].apply(lambda x: x.split('/')[-3])
dataset_df['parent_file'] = dataset_df['dataset_name'].apply(lambda x: x.split('/')[-2])
return dataset_df