Incorporated dataframe_to_np_structured_array(df: pd.DataFrame) from another module.

This commit is contained in:
2024-06-16 18:26:12 +02:00
parent 2d4ecec806
commit e4de4edf28

View File

@ -105,4 +105,26 @@ def created_at():
created_at = now_tz_aware.strftime('%Y-%m-%d')+'_UTC-OFST_' + tz
# Make created at timestamp with tz information
#created_at = now.isoformat()
return created_at
return created_at
def dataframe_to_np_structured_array(df: pd.DataFrame):
# Define the dtype for the structured array, ensuring compatibility with h5py
dtype = []
for col in df.columns:
col_dtype = df[col].dtype
if pd.api.types.is_string_dtype(col_dtype):
# Convert string dtype to fixed-length strings
max_len = df[col].str.len().max()
dtype.append((col, f'S{max_len}'))
elif pd.api.types.is_integer_dtype(col_dtype):
dtype.append((col, 'i4')) # Assuming 32-bit integer
elif pd.api.types.is_float_dtype(col_dtype):
dtype.append((col, 'f4')) # Assuming 32-bit float
else:
raise ValueError(f"Unsupported dtype: {col_dtype}")
# Convert the DataFrame to a structured array
structured_array = np.array(list(df.itertuples(index=False, name=None)), dtype=dtype)
return structured_array