Simplified code and corrected buggy if statement. Included input verification steps and OS path normalization.
This commit is contained in:
178
src/hdf5_lib.py
178
src/hdf5_lib.py
@ -92,14 +92,16 @@ def create_group_hierarchy(obj, df, columns):
|
||||
|
||||
if obj.name == '/':
|
||||
obj.attrs.create('count',df.shape[0])
|
||||
obj.attrs.create('file_list',df['filename'].tolist())
|
||||
|
||||
for group_name in unique_values:
|
||||
|
||||
group = obj.require_group(group_name)
|
||||
group.attrs.create('column_name', columns[0])
|
||||
group.attrs.create('column_name', columns[0])
|
||||
|
||||
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
|
||||
group.attrs.create('count',sub_df.shape[0])
|
||||
group.attrs.create('file_list',sub_df['filename'].tolist())
|
||||
|
||||
# if group_name == 'MgO powder,H2O,HCl':
|
||||
# print('Here:',sub_df.shape)
|
||||
@ -239,7 +241,10 @@ def annotate_root_dir(filename,annotation_dict: dict):
|
||||
|
||||
import shutil
|
||||
|
||||
def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_path : str, select_dir_keywords = [], select_file_keywords =[]):
|
||||
def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_path :
|
||||
str, select_dir_keywords = [],
|
||||
select_file_keywords =[],
|
||||
top_sub_dir_mask : bool = True):
|
||||
|
||||
"""
|
||||
Creates an .h5 file with name ofilename that preserves the directory tree (or folder structure) of given a filesystem path and
|
||||
@ -251,7 +256,7 @@ def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_pat
|
||||
|
||||
ofilename (str):
|
||||
|
||||
input_file_system_path (str) :
|
||||
input_file_system_path (str) : path to root directory, specified with forwards slashes, e.g., path/to/root
|
||||
|
||||
select_dir_keywords (list): default value [],
|
||||
list of string elements to consider or select only directory paths that contain a word in 'select_dir_keywords'.
|
||||
@ -266,93 +271,111 @@ def create_hdf5_file_from_filesystem_path(ofilename : str, input_file_system_pat
|
||||
|
||||
"""
|
||||
|
||||
# Ensure OS compliant paths and keywords
|
||||
|
||||
if '/' in input_file_system_path:
|
||||
input_file_system_path = input_file_system_path.replace('/',os.sep)
|
||||
else:
|
||||
raise ValueError('input_file_system_path needs to be specified using forward slashes "/".' )
|
||||
|
||||
for i, keyword in enumerate(select_dir_keywords):
|
||||
select_dir_keywords[i] = keyword.replace('/',os.sep)
|
||||
|
||||
|
||||
with h5py.File(ofilename, 'w') as h5file:
|
||||
|
||||
root_dir = '?##'
|
||||
|
||||
|
||||
# Visit each subdirectory from top to bottom, root directory defined by input_file_sytem_path to the lower
|
||||
# level directories.
|
||||
for node_number, node in enumerate(os.walk(input_file_system_path, topdown=True)):
|
||||
|
||||
dirpath, dirnames, filenames_list = node
|
||||
# Constrain walkable paths on the specified directory tree by allowing walks that start from root
|
||||
# through subdirectories specified by dir_keywords. This improves efficiency especially, in deep
|
||||
# directory trees with many leaves.
|
||||
paths = []
|
||||
if top_sub_dir_mask:
|
||||
for item in os.listdir(input_file_system_path):
|
||||
if any([item in keyword for keyword in select_dir_keywords]):
|
||||
paths.append(os.path.join(input_file_system_path,item))
|
||||
else:
|
||||
paths.append(input_file_system_path)
|
||||
|
||||
if node_number == 0:
|
||||
offset = dirpath.count(os.sep)
|
||||
|
||||
# Filter out files with filenames not containing a keyword specified in the parameter 'select_file_keywords'.
|
||||
# When select_file_keywords is an empty, i.e., [], do not apply any filter on the filenames.
|
||||
for item in paths:
|
||||
|
||||
root_dir = input_file_system_path
|
||||
|
||||
for node_number, node in enumerate(os.walk(item, topdown=True)):
|
||||
|
||||
dirpath, dirnames, filenames_list = node
|
||||
|
||||
#if node_number == 0:
|
||||
# offset = dirpath.count(os.sep)
|
||||
|
||||
|
||||
filtered_filename_list = []
|
||||
if select_file_keywords:
|
||||
for filename in filenames_list:
|
||||
if any([keyword in filename for keyword in select_file_keywords]):
|
||||
filtered_filename_list.append(filename)
|
||||
else:
|
||||
filtered_filename_list = filenames_list.copy()
|
||||
# Filter out files with filenames not containing a keyword specified in the parameter 'select_file_keywords'.
|
||||
# When select_file_keywords is an empty, i.e., [], do not apply any filter on the filenames.
|
||||
|
||||
|
||||
filtered_filename_list = []
|
||||
if select_file_keywords:
|
||||
for filename in filenames_list:
|
||||
if any([keyword in filename for keyword in select_file_keywords]):
|
||||
filtered_filename_list.append(filename)
|
||||
else:
|
||||
filtered_filename_list = filenames_list.copy()
|
||||
|
||||
admissible_file_ext_list = list(config_file.ext_to_reader_dict.keys())
|
||||
admissible_file_ext_list = list(config_file.ext_to_reader_dict.keys())
|
||||
|
||||
for filename in filtered_filename_list.copy():
|
||||
if not any([ext in filename for ext in admissible_file_ext_list]):
|
||||
filtered_filename_list.remove(filename)
|
||||
for filename in filtered_filename_list.copy():
|
||||
if not any([ext in filename for ext in admissible_file_ext_list]):
|
||||
filtered_filename_list.remove(filename)
|
||||
|
||||
|
||||
# Skip subdirectories that do not contain a keyword in the parameter 'select_dir_keywords' when it is nonempty
|
||||
if select_dir_keywords:
|
||||
if (dirpath.count(os.sep) > offset) and not any([item in dirpath for item in select_dir_keywords]):
|
||||
continue
|
||||
# Skip subdirectories that do not contain a keyword in the parameter 'select_dir_keywords' when it is nonempty
|
||||
if select_dir_keywords:
|
||||
#if (dirpath.count(os.sep) > offset) and not any([item in dirpath for item in select_dir_keywords]):
|
||||
if not any([item in dirpath for item in select_dir_keywords]):
|
||||
continue
|
||||
|
||||
# TODO: i think the below lines can be simplified, or based on the enumeration there is no need for conditionals
|
||||
group_name = dirpath.replace(os.sep,'/')
|
||||
if root_dir == '?##':
|
||||
# Set root_dir to top directory path in input file system
|
||||
root_dir = group_name
|
||||
group_name = group_name.replace(root_dir,'/')
|
||||
|
||||
h5file.attrs.create(name='filtered_file_list',data=filtered_filename_list)
|
||||
h5file.attrs.create(name='file_list',data=filenames_list)
|
||||
else:
|
||||
group_name = group_name.replace(root_dir+'/','/')
|
||||
group_name = dirpath.replace(os.sep,'/')
|
||||
group_name = group_name.replace(root_dir.replace(os.sep,'/') + '/', '/')
|
||||
# Group hierarchy is implicitly defined by the forward slashes
|
||||
h5file.create_group(group_name)
|
||||
h5file[group_name].attrs.create(name='filtered_file_list',data=filtered_filename_list)
|
||||
h5file[group_name].attrs.create(name='file_list',data=filenames_list)
|
||||
|
||||
|
||||
# TODO: for each "admissible" file in filenames, create an associated dataset in the corresponding group (subdirectory)
|
||||
|
||||
for filename in filtered_filename_list:
|
||||
# TODO: for each "admissible" file in filenames, create an associated dataset in the corresponding group (subdirectory)
|
||||
|
||||
# Get file extension (or file type)
|
||||
file_name, file_ext = os.path.splitext(filename)
|
||||
|
||||
#try:
|
||||
if not 'h5' in filename:
|
||||
file_dict = config_file.ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
|
||||
|
||||
if not file_dict:
|
||||
continue
|
||||
|
||||
# file_dict = file_obj
|
||||
# Create group and add their attributes
|
||||
h5file[group_name].create_group(name=file_dict['name'])
|
||||
for key in file_dict['attributes_dict'].keys():
|
||||
h5file[group_name][file_dict['name']].attrs.create(name=key,data=file_dict['attributes_dict'][key])
|
||||
|
||||
# Add datasets to just created group
|
||||
for dataset in file_dict['datasets']:
|
||||
h5file[group_name][file_dict['name']].create_dataset(name = dataset['name'],
|
||||
data = dataset['data'],
|
||||
#dtype = file_dict['dtype'],
|
||||
shape = dataset['shape'])
|
||||
for filename in filtered_filename_list:
|
||||
|
||||
else:
|
||||
config_file.ext_to_reader_dict[file_ext](source_file_path = os.path.join(dirpath,filename),
|
||||
dest_file_obj = h5file,
|
||||
dest_group_name = group_name +'/'+filename)
|
||||
print(file_ext, ':)')
|
||||
# Get file extension (or file type)
|
||||
file_name, file_ext = os.path.splitext(filename)
|
||||
|
||||
#try:
|
||||
if not 'h5' in filename:
|
||||
file_dict = config_file.ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
|
||||
|
||||
if not file_dict:
|
||||
continue
|
||||
|
||||
# file_dict = file_obj
|
||||
# Create group and add their attributes
|
||||
h5file[group_name].create_group(name=file_dict['name'])
|
||||
for key in file_dict['attributes_dict'].keys():
|
||||
h5file[group_name][file_dict['name']].attrs.create(name=key,data=file_dict['attributes_dict'][key])
|
||||
|
||||
# Add datasets to just created group
|
||||
for dataset in file_dict['datasets']:
|
||||
h5file[group_name][file_dict['name']].create_dataset(name = dataset['name'],
|
||||
data = dataset['data'],
|
||||
#dtype = file_dict['dtype'],
|
||||
shape = dataset['shape'])
|
||||
|
||||
else:
|
||||
config_file.ext_to_reader_dict[file_ext](source_file_path = os.path.join(dirpath,filename),
|
||||
dest_file_obj = h5file,
|
||||
dest_group_name = group_name +'/'+filename)
|
||||
print(file_ext, ':)')
|
||||
|
||||
|
||||
|
||||
@ -489,22 +512,25 @@ def main_mtable_h5_from_dataframe():
|
||||
if test_grouping_funcs:
|
||||
group_by_sample = lambda x : utils.group_by_df_column(x,'sample')
|
||||
group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
|
||||
group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
|
||||
#group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
|
||||
else:
|
||||
group_by_sample = 'sample'
|
||||
group_by_type = 'filetype'
|
||||
group_by_filenumber = 'filenumber'
|
||||
|
||||
create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
|
||||
output_filename_path = os.path.join(config_file.outputfile_dir,'thorsten_file_list.h5')
|
||||
|
||||
annotation_dict = {'Campaign name': 'SLS-Campaign-2023',
|
||||
'Users':'Thorsten, Luca, Zoe',
|
||||
'Startdate': str(input_data_df['lastModifiedDatestr'].min()),
|
||||
'Enddate': str(input_data_df['lastModifiedDatestr'].max())
|
||||
create_hdf5_file_from_dataframe(output_filename_path,input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type])
|
||||
#create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
|
||||
|
||||
annotation_dict = {'1-Campaign name': '**SLS-Campaign-2023**',
|
||||
'2-Users':'Thorsten, Luca, Zoe',
|
||||
'3-Startdate': str(input_data_df['lastModifiedDatestr'].min()),
|
||||
'4-Enddate': str(input_data_df['lastModifiedDatestr'].max())
|
||||
}
|
||||
annotate_root_dir('test.h5',annotation_dict)
|
||||
annotate_root_dir(output_filename_path, annotation_dict)
|
||||
|
||||
display_group_hierarchy_on_a_treemap('test.h5')
|
||||
display_group_hierarchy_on_a_treemap(output_filename_path)
|
||||
|
||||
print(':)')
|
||||
|
||||
|
Reference in New Issue
Block a user