Implemented functions for data extraction from hdf5 files.
This commit is contained in:
46
src/hdf5_data_extraction.py
Normal file
46
src/hdf5_data_extraction.py
Normal file
@ -0,0 +1,46 @@
|
||||
import h5py
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
|
||||
def read_dataset_as_dataframe(hdf, dataset_name):
|
||||
dataset = hdf[dataset_name]
|
||||
data = np.empty(dataset.shape, dtype=dataset.dtype)
|
||||
dataset.read_direct(data)
|
||||
df = pd.DataFrame(data)
|
||||
|
||||
if 'categorical' in dataset_name:
|
||||
# Assuming all entries are byte strings encoded with utf-8
|
||||
for column_name in df.columns:
|
||||
df[column_name] = df[column_name].str.decode('utf-8')
|
||||
# Assuming there's a 'timestamps' column that needs to be converted to datetime
|
||||
if 'timestamps' in df.columns:
|
||||
df['timestamps'] = pd.to_datetime(df['timestamps'],yearfirst=True)
|
||||
|
||||
elif 'numerical' in dataset_name:
|
||||
df = df.apply(pd.to_numeric)
|
||||
|
||||
return df
|
||||
|
||||
def extract_filename(dataset_name_path):
|
||||
|
||||
tmp = dataset_name_path.split('/')
|
||||
|
||||
return tmp[len(tmp)-2]
|
||||
|
||||
def list_datasets(hdf5_filename_path):
|
||||
|
||||
def get_datasets(name, obj, list_of_datasets):
|
||||
if isinstance(obj,h5py.Dataset):
|
||||
list_of_datasets.append(name)
|
||||
head, tail = os.path.split(name)
|
||||
print(f'Adding dataset: tail: {head} head: {tail}')
|
||||
|
||||
|
||||
with h5py.File(hdf5_filename_path,'r') as file:
|
||||
list_of_datasets = []
|
||||
file.visititems(lambda name, obj: get_datasets(name, obj, list_of_datasets))
|
||||
|
||||
|
||||
return list_of_datasets
|
Reference in New Issue
Block a user