Implemented functions for data extraction from hdf5 files.

This commit is contained in:
2024-05-31 12:39:10 +02:00
parent e6de1ff55d
commit 69f3857936

View File

@ -0,0 +1,46 @@
import h5py
import pandas as pd
import numpy as np
import os
def read_dataset_as_dataframe(hdf, dataset_name):
dataset = hdf[dataset_name]
data = np.empty(dataset.shape, dtype=dataset.dtype)
dataset.read_direct(data)
df = pd.DataFrame(data)
if 'categorical' in dataset_name:
# Assuming all entries are byte strings encoded with utf-8
for column_name in df.columns:
df[column_name] = df[column_name].str.decode('utf-8')
# Assuming there's a 'timestamps' column that needs to be converted to datetime
if 'timestamps' in df.columns:
df['timestamps'] = pd.to_datetime(df['timestamps'],yearfirst=True)
elif 'numerical' in dataset_name:
df = df.apply(pd.to_numeric)
return df
def extract_filename(dataset_name_path):
tmp = dataset_name_path.split('/')
return tmp[len(tmp)-2]
def list_datasets(hdf5_filename_path):
def get_datasets(name, obj, list_of_datasets):
if isinstance(obj,h5py.Dataset):
list_of_datasets.append(name)
head, tail = os.path.split(name)
print(f'Adding dataset: tail: {head} head: {tail}')
with h5py.File(hdf5_filename_path,'r') as file:
list_of_datasets = []
file.visititems(lambda name, obj: get_datasets(name, obj, list_of_datasets))
return list_of_datasets