Removed bacause some of the functionalities have been outsourced to other modules src/hdf5_ops.py and src/hdf5_writer.py

This commit is contained in:
2024-11-26 11:55:06 +01:00
parent 22298f643a
commit 11ca454b94

View File

@ -1,403 +0,0 @@
import sys
import os
root_dir = os.path.abspath(os.curdir)
sys.path.append(root_dir)
import pandas as pd
import numpy as np
import h5py
import logging
import utils.g5505_utils as utils
import instruments.readers.filereader_registry as filereader_registry
import src.hdf5_ops as hdf5_ops
def create_group_hierarchy(obj, df, columns):
"""
Input:
obj (h5py.File or h5py.Group)
columns (list of strs): denote categorical columns in df to be used to define hdf5 file group hierarchy
"""
if not columns:
return
# Determine categories associated with first categorical column
unique_values = df[columns[0]].unique()
if obj.name == '/':
obj.attrs.create('count',df.shape[0])
obj.attrs.create('file_list',df['filename'].tolist())
for group_name in unique_values:
group = obj.require_group(group_name)
group.attrs.create('column_name', columns[0])
sub_df = df[df[columns[0]]==group_name] # same as df.loc[df[columns[0]]==group_name,:]
group.attrs.create('count',sub_df.shape[0])
group.attrs.create('file_list',sub_df['filename'].tolist())
# if group_name == 'MgO powder,H2O,HCl':
# print('Here:',sub_df.shape)
create_group_hierarchy(group, sub_df, columns[1::])
def is_nested_hierarchy(df) -> bool:
"""receives a dataframe with categorical columns and checks whether rows form a nested group hierarchy.
That is, from bottom to top, subsequent hierarchical levels contain nested groups. The lower level groups belong to exactly one group in the higher level group.
"""
# TODO: generalize the code to check for deeper group hierachies.
def are_nested(df, col, col_nxt):
""" Checks whether low level LL groups can be separated in terms of high level HL groups.
That is, elements of low-level groups do not belong to more than one HL group."""
# Compute higher level group names/categories
memberships = df[col_nxt].unique().tolist()
# Compute upper-level group memberships of low-level groups
col_avg_memberships = df.groupby(col).mean()[col_nxt].unique()
# Check whether all low-level groups have an actual hlg membership. That is, their avg. hlg membership is in the hlg membership.
return all([col_avg_memberships[group_idx] in memberships for group_idx in range(len(col_avg_memberships))])
df_tmp = df.copy()
# Create relabeling map
for column_name in df_tmp.columns:
category_index = pd.Series(np.arange(len(df_tmp[column_name].unique())), index=df_tmp[column_name].unique())
df_tmp[column_name] = category_index[df_tmp[column_name].tolist()].tolist()
df_tmp.plot()
return all([are_nested(df_tmp,'level_'+str(i)+'_groups','level_'+str(i+1)+'_groups') for i in range(len(df_tmp.columns)-1)])
def transfer_file_dict_to_hdf5(h5file, group_name, file_dict):
"""
Transfers data from a file_dict to an HDF5 file.
Parameters
----------
h5file : h5py.File
HDF5 file object where the data will be written.
group_name : str
Name of the HDF5 group where data will be stored.
file_dict : dict
Dictionary containing file data to be transferred. Required structure:
{
'name': str,
'attributes_dict': dict,
'datasets': [
{
'name': str,
'data': array-like,
'shape': tuple,
'attributes': dict (optional)
},
...
]
}
Returns
-------
None
"""
if not file_dict:
return
try:
# Create group and add their attributes
group = h5file[group_name].create_group(name=file_dict['name'])
# Add group attributes
group.attrs.update(file_dict['attributes_dict'])
# Add datasets to the just created group
for dataset in file_dict['datasets']:
dataset_obj = group.create_dataset(
name=dataset['name'],
data=dataset['data'],
shape=dataset['shape']
)
# Add dataset's attributes
attributes = dataset.get('attributes', {})
dataset_obj.attrs.update(attributes)
except Exception as inst:
print(inst)
logging.error('Failed to transfer data into HDF5: %s', inst)
def copy_file_in_group(source_file_path, dest_file_obj : h5py.File, dest_group_name, work_with_copy : bool = True):
# Create copy of original file to avoid possible file corruption and work with it.
if work_with_copy:
tmp_file_path = utils.make_file_copy(source_file_path)
else:
tmp_file_path = source_file_path
# Open backup h5 file and copy complet filesystem directory onto a group in h5file
with h5py.File(tmp_file_path,'r') as src_file:
dest_file_obj.copy(source= src_file['/'], dest= dest_group_name)
if 'tmp_files' in tmp_file_path:
os.remove(tmp_file_path)
def create_hdf5_file_from_filesystem_path(path_to_input_directory: str,
path_to_filenames_dict: dict = None,
select_dir_keywords : list = [],
root_metadata_dict : dict = {}):
"""
Creates an .h5 file with name "output_filename" that preserves the directory tree (or folder structure)
of a given filesystem path.
The data integration capabilities are limited by our file reader, which can only access data from a list of
admissible file formats. These, however, can be extended. Directories are groups in the resulting HDF5 file.
Files are formatted as composite objects consisting of a group, file, and attributes.
Parameters
----------
output_filename : str
Name of the output HDF5 file.
path_to_input_directory : str
Path to root directory, specified with forward slashes, e.g., path/to/root.
path_to_filenames_dict : dict, optional
A pre-processed dictionary where keys are directory paths on the input directory's tree and values are lists of files.
If provided, 'input_file_system_path' is ignored.
select_dir_keywords : list
List of string elements to consider or select only directory paths that contain
a word in 'select_dir_keywords'. When empty, all directory paths are considered
to be included in the HDF5 file group hierarchy.
root_metadata_dict : dict
Metadata to include at the root level of the HDF5 file.
Returns
-------
output_filename : str
Path to the created HDF5 file.
"""
if not '/' in path_to_input_directory:
raise ValueError('path_to_input_directory needs to be specified using forward slashes "/".' )
#path_to_output_directory = os.path.join(path_to_input_directory,'..')
path_to_input_directory = os.path.normpath(path_to_input_directory).strip(os.sep)
for i, keyword in enumerate(select_dir_keywords):
select_dir_keywords[i] = keyword.replace('/',os.sep)
if not path_to_filenames_dict:
# On dry_run=True, returns path to files dictionary of the output directory without making a actual copy of the input directory
path_to_output_directory = os.path.join(path_to_input_directory,'..')
path_to_filenames_dict = utils.copy_directory_with_contraints(path_to_input_directory,
path_to_output_directory,
dry_run=True)
# Set input_directory as copied input directory
root_dir = path_to_input_directory
path_to_output_file = path_to_input_directory.rstrip(os.path.sep) + '.h5'
with h5py.File(path_to_output_file, mode='w', track_order=True) as h5file:
number_of_dirs = len(path_to_filenames_dict.keys())
dir_number = 1
for dirpath, filtered_filenames_list in path_to_filenames_dict.items():
start_message = f'Starting to transfer files in directory: {dirpath}'
end_message = f'\nCompleted transferring files in directory: {dirpath}'
# Print and log the start message
print(start_message)
logging.info(start_message)
# Check if filtered_filenames_list is nonempty. TODO: This is perhaps redundant by design of path_to_filenames_dict.
if not filtered_filenames_list:
continue
group_name = dirpath.replace(os.sep,'/')
group_name = group_name.replace(root_dir.replace(os.sep,'/') + '/', '/')
# Flatten group name to one level
if select_dir_keywords:
offset = sum([len(i.split(os.sep)) if i in dirpath else 0 for i in select_dir_keywords])
else:
offset = 1
tmp_list = group_name.split('/')
if len(tmp_list) > offset+1:
group_name = '/'.join([tmp_list[i] for i in range(offset+1)])
# Group hierarchy is implicitly defined by the forward slashes
if not group_name in h5file.keys():
h5file.create_group(group_name)
#h5file[group_name].attrs.create(name='filtered_file_list',data=convert_string_to_bytes(filtered_filename_list))
#h5file[group_name].attrs.create(name='file_list',data=convert_string_to_bytes(filenames_list))
else:
print(group_name,' was already created.')
for filenumber, filename in enumerate(filtered_filenames_list):
#file_ext = os.path.splitext(filename)[1]
#try:
# hdf5 path to filename group
dest_group_name = f'{group_name}/{filename}'
if not 'h5' in filename:
#file_dict = config_file.select_file_readers(group_id)[file_ext](os.path.join(dirpath,filename))
#file_dict = ext_to_reader_dict[file_ext](os.path.join(dirpath,filename))
file_dict = filereader_registry.select_file_reader(dest_group_name)(os.path.join(dirpath,filename))
transfer_file_dict_to_hdf5(h5file, group_name, file_dict)
else:
source_file_path = os.path.join(dirpath,filename)
dest_file_obj = h5file
#group_name +'/'+filename
#ext_to_reader_dict[file_ext](source_file_path, dest_file_obj, dest_group_name)
#g5505f_reader.select_file_reader(dest_group_name)(source_file_path, dest_file_obj, dest_group_name)
copy_file_in_group(source_file_path, dest_file_obj, dest_group_name, False)
# Update the progress bar and log the end message
utils.progressBar(dir_number, number_of_dirs, end_message)
logging.info(end_message)
dir_number = dir_number + 1
if len(root_metadata_dict.keys())>0:
for key, value in root_metadata_dict.items():
#if key in h5file.attrs:
# del h5file.attrs[key]
h5file.attrs.create(key, value)
#output_yml_filename_path = hdf5_vis.take_yml_snapshot_of_hdf5_file(output_filename)
return path_to_output_file #, output_yml_filename_path
def save_processed_dataframe_to_hdf5(df, annotator, output_filename): # src_hdf5_path, script_date, script_name):
"""
Save processed dataframe columns with annotations to an HDF5 file.
Parameters:
df (pd.DataFrame): DataFrame containing processed time series.
annotator (): Annotator object with get_metadata method.
output_filename (str): Path to the source HDF5 file.
"""
# Convert datetime columns to string
datetime_cols = df.select_dtypes(include=['datetime64']).columns
if list(datetime_cols):
df[datetime_cols] = df[datetime_cols].map(str)
# Convert dataframe to structured array
icad_data_table = utils.convert_dataframe_to_np_structured_array(df)
# Get metadata
metadata_dict = annotator.get_metadata()
# Prepare project level attributes to be added at the root level
project_level_attributes = metadata_dict['metadata']['project']
# Prepare high-level attributes
high_level_attributes = {
'parent_files': metadata_dict['parent_files'],
**metadata_dict['metadata']['sample'],
**metadata_dict['metadata']['environment'],
**metadata_dict['metadata']['instruments']
}
# Prepare data level attributes
data_level_attributes = metadata_dict['metadata']['datasets']
for key, value in data_level_attributes.items():
if isinstance(value,dict):
data_level_attributes[key] = utils.convert_attrdict_to_np_structured_array(value)
# Prepare file dictionary
file_dict = {
'name': project_level_attributes['processing_file'],
'attributes_dict': high_level_attributes,
'datasets': [{
'name': "data_table",
'data': icad_data_table,
'shape': icad_data_table.shape,
'attributes': data_level_attributes
}]
}
# Check if the file exists
if os.path.exists(output_filename):
mode = "a"
print(f"File {output_filename} exists. Opening in append mode.")
else:
mode = "w"
print(f"File {output_filename} does not exist. Creating a new file.")
# Write to HDF5
with h5py.File(output_filename, mode) as h5file:
# Add project level attributes at the root/top level
h5file.attrs.update(project_level_attributes)
transfer_file_dict_to_hdf5(h5file, '/', file_dict)
def main_mtable_h5_from_dataframe():
#import os
ROOT_DIR = os.path.abspath(os.curdir)
# Read BeamTimeMetaData.h5, containing Thorsten's Matlab Table
input_data_df = read_mtable_as_dataframe(os.path.join(ROOT_DIR,'input_files\\BeamTimeMetaData.h5'))
# Preprocess Thorsten's input_data dataframe so that i can be used to create a newer .h5 file
# under certain grouping specificiations.
input_data_df = input_data_df.rename(columns = {'name':'filename'})
input_data_df = utils.augment_with_filenumber(input_data_df)
input_data_df = utils.augment_with_filetype(input_data_df)
input_data_df = utils.split_sample_col_into_sample_and_data_quality_cols(input_data_df)
input_data_df['lastModifiedDatestr'] = input_data_df['lastModifiedDatestr'].astype('datetime64[s]')
# Define grouping functions to be passed into create_hdf5_file function. These can also be set
# as strings refering to categorical columns in input_data_df.
test_grouping_funcs = True
if test_grouping_funcs:
group_by_sample = lambda x : utils.group_by_df_column(x,'sample')
group_by_type = lambda x : utils.group_by_df_column(x,'filetype')
#group_by_filenumber = lambda x : utils.group_by_df_column(x,'filenumber')
else:
group_by_sample = 'sample'
group_by_type = 'filetype'
group_by_filenumber = 'filenumber'
output_filename_path = os.path.join('output_files','thorsten_file_list.h5')
create_hdf5_file_from_dataframe(output_filename_path,input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type])
#create_hdf5_file_from_dataframe('test.h5',input_data_df, 'top-down', group_by_funcs = [group_by_sample, group_by_type, group_by_filenumber])
annotation_dict = {'1-Campaign name': '**SLS-Campaign-2023**',
'2-Users':'Thorsten, Luca, Zoe',
'3-Startdate': str(input_data_df['lastModifiedDatestr'].min()),
'4-Enddate': str(input_data_df['lastModifiedDatestr'].max())
}
hdf5_ops.annotate_root_dir(output_filename_path, annotation_dict)
#display_group_hierarchy_on_a_treemap(output_filename_path)
print(':)')
if __name__ == '__main__':
#main()
main_mtable_h5_from_dataframe()
#main_5505()
print(':)')