522 lines
22 KiB
Python
522 lines
22 KiB
Python
import numpy as np
|
|
import uncertainties as u
|
|
from .fit2 import create_uncertanities
|
|
|
|
|
|
def add_dict(dict1, dict2):
|
|
"""adds two dictionaries, meta of the new is saved as meata+original_filename and
|
|
measurements are shifted to continue with numbering of first dict
|
|
:arg dict1 : dictionarry to add to
|
|
:arg dict2 : dictionarry from which to take the measurements
|
|
:return dict1 : combined dictionary
|
|
Note: dict1 must be made from ccl, otherwise we would have to change the structure of loaded
|
|
dat file"""
|
|
max_measurement_dict1 = max([int(str(keys)[1:]) for keys in dict1["Measurements"]])
|
|
if dict2["meta"]["data_type"] == ".ccl":
|
|
new_filenames = [
|
|
"M" + str(x + max_measurement_dict1)
|
|
for x in [int(str(keys)[1:]) for keys in dict2["Measurements"]]
|
|
]
|
|
new_meta_name = "meta" + str(dict2["meta"]["original_filename"])
|
|
if new_meta_name not in dict1:
|
|
for keys, name in zip(dict2["Measurements"], new_filenames):
|
|
dict2["Measurements"][keys]["file_of_origin"] = str(
|
|
dict2["meta"]["original_filename"]
|
|
)
|
|
dict1["Measurements"][name] = dict2["Measurements"][keys]
|
|
|
|
dict1[new_meta_name] = dict2["meta"]
|
|
|
|
else:
|
|
raise KeyError(
|
|
str(
|
|
"The file %s has alredy been added to %s"
|
|
% (dict2["meta"]["original_filename"], dict1["meta"]["original_filename"])
|
|
)
|
|
)
|
|
elif dict2["meta"]["data_type"] == ".dat":
|
|
d = {}
|
|
new_name = "M" + str(max_measurement_dict1 + 1)
|
|
hkl = dict2["meta"]["title"]
|
|
d["h_index"] = float(hkl.split()[-3])
|
|
d["k_index"] = float(hkl.split()[-2])
|
|
d["l_index"] = float(hkl.split()[-1])
|
|
d["number_of_measurements"] = len(dict2["Measurements"]["NP"])
|
|
d["om"] = dict2["Measurements"]["om"]
|
|
d["Counts"] = dict2["Measurements"]["Counts"]
|
|
d["monitor"] = dict2["Measurements"]["Monitor1"][0]
|
|
d["temperature"] = dict2["meta"]["temp"]
|
|
d["mag_field"] = dict2["meta"]["mf"]
|
|
d["omega_angle"] = dict2["meta"]["omega"]
|
|
dict1["Measurements"][new_name] = d
|
|
print(hkl.split())
|
|
for keys in d:
|
|
print(keys)
|
|
|
|
print("s")
|
|
|
|
return dict1
|
|
|
|
|
|
def auto(dict):
|
|
"""takes just unique tuples from all tuples in dictionary returend by scan_dict
|
|
intendet for automatic merge if you doesent want to specify what scans to merge together
|
|
args: dict - dictionary from scan_dict function
|
|
:return dict - dict without repetitions"""
|
|
for keys in dict:
|
|
tuple_list = dict[keys]
|
|
new = list()
|
|
for i in range(len(tuple_list)):
|
|
if tuple_list[0][0] == tuple_list[i][0]:
|
|
new.append(tuple_list[i])
|
|
dict[keys] = new
|
|
return dict
|
|
|
|
|
|
def scan_dict(dict):
|
|
"""scans dictionary for duplicate hkl indexes
|
|
:arg dict : dictionary to scan
|
|
:return dictionary with matching scans, if there are none, the dict is empty
|
|
note: can be checked by "not d", true if empty
|
|
"""
|
|
|
|
d = {}
|
|
for i in dict["Measurements"]:
|
|
for j in dict["Measurements"]:
|
|
if dict["Measurements"][str(i)] != dict["Measurements"][str(j)]:
|
|
itup = (
|
|
dict["Measurements"][str(i)]["h_index"],
|
|
dict["Measurements"][str(i)]["k_index"],
|
|
dict["Measurements"][str(i)]["l_index"],
|
|
)
|
|
jtup = (
|
|
dict["Measurements"][str(j)]["h_index"],
|
|
dict["Measurements"][str(j)]["k_index"],
|
|
dict["Measurements"][str(j)]["l_index"],
|
|
)
|
|
if itup != jtup:
|
|
pass
|
|
else:
|
|
|
|
if str(itup) not in d:
|
|
d[str(itup)] = list()
|
|
d[str(itup)].append((i, j))
|
|
else:
|
|
d[str(itup)].append((i, j))
|
|
else:
|
|
continue
|
|
return d
|
|
|
|
|
|
def compare_hkl(dict1, dict2):
|
|
"""Compares two dictionaries based on hkl indexes and return dictionary with str(h k l) as
|
|
key and tuple with keys to same measurement in dict1 and dict2
|
|
:arg dict1 : first dictionary
|
|
:arg dict2 : second dictionary
|
|
:return d : dict with matches
|
|
example of one key: '0.0 0.0 -1.0 : ('M1', 'M9')' meaning that 001 hkl measurement is M1 in
|
|
first dict and M9 in second"""
|
|
d = {}
|
|
dupl = 0
|
|
for keys in dict1["Measurements"]:
|
|
for key in dict2["Measurements"]:
|
|
if (
|
|
dict1["Measurements"][str(keys)]["h_index"]
|
|
== dict2["Measurements"][str(key)]["h_index"]
|
|
and dict1["Measurements"][str(keys)]["k_index"]
|
|
== dict2["Measurements"][str(key)]["k_index"]
|
|
and dict1["Measurements"][str(keys)]["l_index"]
|
|
== dict2["Measurements"][str(key)]["l_index"]
|
|
):
|
|
|
|
if (
|
|
str(
|
|
(
|
|
str(dict1["Measurements"][str(keys)]["h_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["k_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["l_index"])
|
|
)
|
|
)
|
|
not in d
|
|
):
|
|
d[
|
|
str(
|
|
str(dict1["Measurements"][str(keys)]["h_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["k_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["l_index"])
|
|
)
|
|
] = (str(keys), str(key))
|
|
else:
|
|
dupl = dupl + 1
|
|
d[
|
|
str(
|
|
str(dict1["Measurements"][str(keys)]["h_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["k_index"])
|
|
+ " "
|
|
+ str(dict1["Measurements"][str(keys)]["l_index"])
|
|
+ "_dupl"
|
|
+ str(dupl)
|
|
)
|
|
] = (str(keys), str(key))
|
|
else:
|
|
continue
|
|
|
|
return d
|
|
|
|
|
|
def create_tuples(x, y, y_err):
|
|
"""creates tuples for sorting and merginng of the data
|
|
Counts need to be normalized to monitor before"""
|
|
t = list()
|
|
for i in range(len(x)):
|
|
tup = (x[i], y[i], y_err[i])
|
|
t.append(tup)
|
|
return t
|
|
|
|
|
|
def normalize(dict, key, monitor):
|
|
"""Normalizes the measurement to monitor, checks if sigma exists, otherwise creates it
|
|
:arg dict : dictionary to from which to tkae the scan
|
|
:arg key : which scan to normalize from dict1
|
|
:arg monitor : final monitor
|
|
:return counts - normalized counts
|
|
:return sigma - normalized sigma"""
|
|
|
|
counts = np.array(dict["Measurements"][key]["Counts"])
|
|
sigma = (
|
|
np.sqrt(counts)
|
|
if "sigma" not in dict["Measurements"][key]
|
|
else dict["Measurements"][key]["sigma"]
|
|
)
|
|
monitor_ratio = monitor / dict["Measurements"][key]["monitor"]
|
|
scaled_counts = counts * monitor_ratio
|
|
scaled_sigma = np.array(sigma) * monitor_ratio
|
|
|
|
return scaled_counts, scaled_sigma
|
|
|
|
|
|
def merge(dict1, dict2, keys, auto=True, monitor=100000):
|
|
"""merges the two tuples and sorts them, if om value is same, Counts value is average
|
|
averaging is propagated into sigma if dict1 == dict2, key[1] is deleted after merging
|
|
:arg dict1 : dictionary to which measurement will be merged
|
|
:arg dict2 : dictionary from which measurement will be merged
|
|
:arg keys : tuple with key to dict1 and dict2
|
|
:arg auto : if true, when monitors are same, does not change it, if flase, takes monitor always
|
|
:arg monitor : final monitor after merging
|
|
note: dict1 and dict2 can be same dict
|
|
:return dict1 with merged scan"""
|
|
if auto:
|
|
if dict1["Measurements"][keys[0]]["monitor"] == dict2["Measurements"][keys[1]]["monitor"]:
|
|
monitor = dict1["Measurements"][keys[0]]["monitor"]
|
|
|
|
# load om and Counts
|
|
x1, x2 = dict1["Measurements"][keys[0]]["om"], dict2["Measurements"][keys[1]]["om"]
|
|
cor_y1, y_err1 = normalize(dict1, keys[0], monitor=monitor)
|
|
cor_y2, y_err2 = normalize(dict2, keys[1], monitor=monitor)
|
|
# creates touples (om, Counts, sigma) for sorting and further processing
|
|
tuple_list = create_tuples(x1, cor_y1, y_err1) + create_tuples(x2, cor_y2, y_err2)
|
|
# Sort the list on om and add 0 0 0 tuple to the last position
|
|
sorted_t = sorted(tuple_list, key=lambda tup: tup[0])
|
|
sorted_t.append((0, 0, 0))
|
|
om, Counts, sigma = [], [], []
|
|
seen = list()
|
|
for i in range(len(sorted_t) - 1):
|
|
if sorted_t[i][0] not in seen:
|
|
if sorted_t[i][0] != sorted_t[i + 1][0]:
|
|
om = np.append(om, sorted_t[i][0])
|
|
Counts = np.append(Counts, sorted_t[i][1])
|
|
sigma = np.append(sigma, sorted_t[i][2])
|
|
else:
|
|
om = np.append(om, sorted_t[i][0])
|
|
counts1, counts2 = sorted_t[i][1], sorted_t[i + 1][1]
|
|
sigma1, sigma2 = sorted_t[i][2], sorted_t[i + 1][2]
|
|
count_err1 = u.ufloat(counts1, sigma1)
|
|
count_err2 = u.ufloat(counts2, sigma2)
|
|
avg = (count_err1 + count_err2) / 2
|
|
Counts = np.append(Counts, avg.n)
|
|
sigma = np.append(sigma, avg.s)
|
|
seen.append(sorted_t[i][0])
|
|
else:
|
|
continue
|
|
|
|
if dict1 == dict2:
|
|
del dict1["Measurements"][keys[1]]
|
|
|
|
note = (
|
|
f"This measurement was merged with measurement {keys[1]} from "
|
|
f'file {dict2["meta"]["original_filename"]} \n'
|
|
)
|
|
if "notes" not in dict1["Measurements"][str(keys[0])]:
|
|
dict1["Measurements"][str(keys[0])]["notes"] = note
|
|
else:
|
|
dict1["Measurements"][str(keys[0])]["notes"] += note
|
|
|
|
dict1["Measurements"][keys[0]]["om"] = om
|
|
dict1["Measurements"][keys[0]]["Counts"] = Counts
|
|
dict1["Measurements"][keys[0]]["sigma"] = sigma
|
|
dict1["Measurements"][keys[0]]["monitor"] = monitor
|
|
print("merging done")
|
|
return dict1
|
|
|
|
|
|
def substract_measurement(dict1, dict2, keys, auto=True, monitor=100000):
|
|
"""Substracts two measurement (measurement key2 from dict2 from measurent key1 in dict1), expects om to be same
|
|
:arg dict1 : dictionary to which measurement will be merged
|
|
:arg dict2 : dictionary from which measurement will be merged
|
|
:arg keys : tuple with key to dict1 and dict2
|
|
:arg auto : if true, when monitors are same, does not change it, if flase, takes monitor always
|
|
:arg monitor : final monitor after merging
|
|
:returns d : dict1 with substracted Counts from dict2 and sigma that comes from the substraction"""
|
|
|
|
if len(dict1["Measurements"][keys[0]]["om"]) != len(dict2["Measurements"][keys[1]]["om"]):
|
|
raise ValueError("Omegas have different lengths, cannot be substracted")
|
|
|
|
if auto:
|
|
if dict1["Measurements"][keys[0]]["monitor"] == dict2["Measurements"][keys[1]]["monitor"]:
|
|
monitor = dict1["Measurements"][keys[0]]["monitor"]
|
|
|
|
cor_y1, y_err1 = normalize(dict1, keys[0], monitor=monitor)
|
|
cor_y2, y_err2 = normalize(dict2, keys[1], monitor=monitor)
|
|
|
|
dict1_count_err = create_uncertanities(cor_y1, y_err1)
|
|
dict2_count_err = create_uncertanities(cor_y2, y_err2)
|
|
|
|
res = np.subtract(dict1_count_err, dict2_count_err)
|
|
|
|
res_nom = []
|
|
res_err = []
|
|
for k in range(len(res)):
|
|
res_nom = np.append(res_nom, res[k].n)
|
|
res_err = np.append(res_err, res[k].s)
|
|
|
|
if len([num for num in res_nom if num < 0]) >= 0.3 * len(res_nom):
|
|
print(
|
|
f"Warning! percentage of negative numbers in measurement subsracted {keys[0]} is "
|
|
f"{len([num for num in res_nom if num < 0]) / len(res_nom)}"
|
|
)
|
|
|
|
dict1["Measurements"][str(keys[0])]["Counts"] = res_nom
|
|
dict1["Measurements"][str(keys[0])]["sigma"] = res_err
|
|
dict1["Measurements"][str(keys[0])]["monitor"] = monitor
|
|
note = (
|
|
f'Measurement {keys[1]} from file {dict2["meta"]["original_filename"]} '
|
|
f"was substracted from this measurement \n"
|
|
)
|
|
if "notes" not in dict1["Measurements"][str(keys[0])]:
|
|
dict1["Measurements"][str(keys[0])]["notes"] = note
|
|
else:
|
|
dict1["Measurements"][str(keys[0])]["notes"] += note
|
|
return dict1
|
|
|
|
|
|
def compare_dict(dict1, dict2):
|
|
"""takes two ccl dictionaries and compare different values for each key
|
|
:arg dict1 : dictionary 1 (ccl)
|
|
:arg dict2 : dictionary 2 (ccl)
|
|
:returns warning : dictionary with keys from primary files (if they differ) with
|
|
information of how many measurement differ and which ones differ
|
|
:returns report_string string comparing all different values respecively of measurements"""
|
|
|
|
if dict1["meta"]["data_type"] != dict2["meta"]["data_type"]:
|
|
print("select two dicts")
|
|
return
|
|
S = []
|
|
conflicts = {}
|
|
warnings = {}
|
|
|
|
comp = compare_hkl(dict1, dict2)
|
|
d1 = scan_dict(dict1)
|
|
d2 = scan_dict(dict2)
|
|
if not d1:
|
|
S.append("There are no duplicates in %s (dict1) \n" % dict1["meta"]["original_filename"])
|
|
else:
|
|
S.append(
|
|
"There are %d duplicates in %s (dict1) \n"
|
|
% (len(d1), dict1["meta"]["original_filename"])
|
|
)
|
|
warnings["Duplicates in dict1"] = list()
|
|
for keys in d1:
|
|
S.append("Measurements %s with hkl %s \n" % (d1[keys], keys))
|
|
warnings["Duplicates in dict1"].append(d1[keys])
|
|
if not d2:
|
|
S.append("There are no duplicates in %s (dict2) \n" % dict2["meta"]["original_filename"])
|
|
else:
|
|
S.append(
|
|
"There are %d duplicates in %s (dict2) \n"
|
|
% (len(d2), dict2["meta"]["original_filename"])
|
|
)
|
|
warnings["Duplicates in dict2"] = list()
|
|
for keys in d2:
|
|
S.append("Measurements %s with hkl %s \n" % (d2[keys], keys))
|
|
warnings["Duplicates in dict2"].append(d2[keys])
|
|
|
|
# compare meta
|
|
S.append("Different values in meta: \n")
|
|
different_meta = {
|
|
k: dict1["meta"][k]
|
|
for k in dict1["meta"]
|
|
if k in dict2["meta"] and dict1["meta"][k] != dict2["meta"][k]
|
|
}
|
|
exlude_meta_set = ["original_filename", "date", "title"]
|
|
for keys in different_meta:
|
|
if keys in exlude_meta_set:
|
|
continue
|
|
else:
|
|
if keys not in conflicts:
|
|
conflicts[keys] = 1
|
|
else:
|
|
conflicts[keys] = conflicts[keys] + 1
|
|
|
|
S.append(" Different values in %s \n" % str(keys))
|
|
S.append(" dict1: %s \n" % str(dict1["meta"][str(keys)]))
|
|
S.append(" dict2: %s \n" % str(dict2["meta"][str(keys)]))
|
|
|
|
# compare Measurements
|
|
S.append(
|
|
"Number of measurements in %s = %s \n"
|
|
% (dict1["meta"]["original_filename"], len(dict1["Measurements"]))
|
|
)
|
|
S.append(
|
|
"Number of measurements in %s = %s \n"
|
|
% (dict2["meta"]["original_filename"], len(dict2["Measurements"]))
|
|
)
|
|
S.append("Different values in Measurements:\n")
|
|
select_set = ["om", "Counts", "sigma"]
|
|
exlude_set = ["time", "Counts", "date", "notes"]
|
|
for keys1 in comp:
|
|
for key2 in dict1["Measurements"][str(comp[str(keys1)][0])]:
|
|
if key2 in exlude_set:
|
|
continue
|
|
if key2 not in select_set:
|
|
try:
|
|
if (
|
|
dict1["Measurements"][comp[str(keys1)][0]][str(key2)]
|
|
!= dict2["Measurements"][str(comp[str(keys1)][1])][str(key2)]
|
|
):
|
|
S.append(
|
|
"Measurement value "
|
|
"%s"
|
|
", with hkl %s differs in meausrements %s and %s \n"
|
|
% (key2, keys1, comp[str(keys1)][0], comp[str(keys1)][1])
|
|
)
|
|
S.append(
|
|
" dict1: %s \n"
|
|
% str(dict1["Measurements"][comp[str(keys1)][0]][str(key2)])
|
|
)
|
|
S.append(
|
|
" dict2: %s \n"
|
|
% str(dict2["Measurements"][comp[str(keys1)][1]][str(key2)])
|
|
)
|
|
if key2 not in conflicts:
|
|
conflicts[key2] = {}
|
|
conflicts[key2]["amount"] = 1
|
|
conflicts[key2]["measurements"] = str(comp[str(keys1)])
|
|
else:
|
|
|
|
conflicts[key2]["amount"] = conflicts[key2]["amount"] + 1
|
|
conflicts[key2]["measurements"] = (
|
|
conflicts[key2]["measurements"] + " " + (str(comp[str(keys1)]))
|
|
)
|
|
except KeyError as e:
|
|
print("Missing keys, some files were probably merged or substracted")
|
|
print(e.args)
|
|
|
|
else:
|
|
try:
|
|
comparison = list(
|
|
dict1["Measurements"][comp[str(keys1)][0]][str(key2)]
|
|
) == list(dict2["Measurements"][comp[str(keys1)][1]][str(key2)])
|
|
if len(list(dict1["Measurements"][comp[str(keys1)][0]][str(key2)])) != len(
|
|
list(dict2["Measurements"][comp[str(keys1)][1]][str(key2)])
|
|
):
|
|
if str("different length of %s" % key2) not in warnings:
|
|
warnings[str("different length of %s" % key2)] = list()
|
|
warnings[str("different length of %s" % key2)].append(
|
|
(str(comp[keys1][0]), str(comp[keys1][1]))
|
|
)
|
|
else:
|
|
warnings[str("different length of %s" % key2)].append(
|
|
(str(comp[keys1][0]), str(comp[keys1][1]))
|
|
)
|
|
if not comparison:
|
|
S.append(
|
|
"Measurement value "
|
|
"%s"
|
|
" differs in measurement %s and %s \n"
|
|
% (key2, comp[str(keys1)][0], comp[str(keys1)][1])
|
|
)
|
|
S.append(
|
|
" dict1: %s \n"
|
|
% str(list(dict1["Measurements"][comp[str(keys1)][0]][str(key2)]))
|
|
)
|
|
S.append(
|
|
" dict2: %s \n"
|
|
% str(list(dict2["Measurements"][comp[str(keys1)][1]][str(key2)]))
|
|
)
|
|
if key2 not in conflicts:
|
|
conflicts[key2] = {}
|
|
conflicts[key2]["amount"] = 1
|
|
conflicts[key2]["measurements"] = str(comp[str(keys1)])
|
|
else:
|
|
conflicts[key2]["amount"] = conflicts[key2]["amount"] + 1
|
|
conflicts[key2]["measurements"] = (
|
|
conflicts[key2]["measurements"] + " " + (str(comp[str(keys1)]))
|
|
)
|
|
except KeyError as e:
|
|
print("Missing keys, some files were probably merged or substracted")
|
|
print(e.args)
|
|
|
|
for keys in conflicts:
|
|
try:
|
|
conflicts[str(keys)]["measurements"] = conflicts[str(keys)]["measurements"].split(" ")
|
|
except:
|
|
continue
|
|
report_string = "".join(S)
|
|
return warnings, conflicts, report_string
|
|
|
|
|
|
def guess_next(dict1, dict2, comp):
|
|
"""iterates thorough the scans and tries to decide if the scans should be
|
|
substracted or merged"""
|
|
threshold = 0.05
|
|
for keys in comp:
|
|
if (
|
|
abs(
|
|
(
|
|
dict1["Measurements"][str(comp[keys][0])]["temperature"]
|
|
- dict2["Measurements"][str(comp[keys][1])]["temperature"]
|
|
)
|
|
/ dict2["Measurements"][str(comp[keys][1])]["temperature"]
|
|
)
|
|
< threshold
|
|
and abs(
|
|
(
|
|
dict1["Measurements"][str(comp[keys][0])]["mag_field"]
|
|
- dict2["Measurements"][str(comp[keys][1])]["mag_field"]
|
|
)
|
|
/ dict2["Measurements"][str(comp[keys][1])]["mag_field"]
|
|
)
|
|
< threshold
|
|
):
|
|
comp[keys] = comp[keys] + tuple("m")
|
|
else:
|
|
comp[keys] = comp[keys] + tuple("s")
|
|
|
|
return comp
|
|
|
|
|
|
def process_dict(dict1, dict2, comp):
|
|
"""substracts or merges scans, guess_next function must run first """
|
|
for keys in comp:
|
|
if comp[keys][2] == "s":
|
|
substract_measurement(dict1, dict2, comp[keys])
|
|
elif comp[keys][2] == "m":
|
|
merge(dict1, dict2, comp[keys])
|
|
|
|
return dict1
|