252 lines
9.9 KiB
Python
252 lines
9.9 KiB
Python
import numpy as np
|
|
from lmfit import Model, Parameters
|
|
from scipy.integrate import simps
|
|
import uncertainties as u
|
|
|
|
def bin_data(array, binsize):
|
|
if isinstance(binsize, int) and 0 < binsize < len(array):
|
|
return [np.mean(array[binsize * i:binsize * i + binsize]) for i in range(int(
|
|
np.ceil(len(array) / binsize)))]
|
|
else:
|
|
print("Binsize need to be positive integer smaller than lenght of array")
|
|
return array
|
|
|
|
def find_nearest(array, value):
|
|
# find nearest value and return index
|
|
array = np.asarray(array)
|
|
idx = (np.abs(array - value)).argmin()
|
|
return idx
|
|
|
|
|
|
def create_uncertanities(y, y_err):
|
|
# create array with uncertanities for error propagation
|
|
combined = np.array([])
|
|
for i in range(len(y)):
|
|
part = u.ufloat(y[i], y_err[i])
|
|
combined = np.append(combined, part)
|
|
return combined
|
|
|
|
|
|
def fitccl(
|
|
data,
|
|
keys,
|
|
guess,
|
|
vary,
|
|
constraints_min,
|
|
constraints_max,
|
|
numfit_min=None,
|
|
numfit_max=None,
|
|
binning=None
|
|
):
|
|
"""Made for fitting of ccl date where 1 peak is expected. Allows for combination of gaussian and linear model combination
|
|
:param data: dictionary after peak fining
|
|
:param keys: name of the measurement in the data dict (i.e. M123)
|
|
:param guess: initial guess for the fitting, if none, some values are added automatically in order (see below)
|
|
:param vary: True if parameter can vary during fitting, False if it to be fixed
|
|
:param numfit_min: minimal value on x axis for numerical integration - if none is centre of gaussian minus 3 sigma
|
|
:param numfit_max: maximal value on x axis for numerical integration - if none is centre of gaussian plus 3 sigma
|
|
:param constraints_min: min constranits value for fit
|
|
:param constraints_max: max constranits value for fit
|
|
:param binning : binning of the data
|
|
:return data dict with additional values
|
|
order for guess, vary, constraints_min, constraints_max:
|
|
[Gaussian centre, Gaussian sigma, Gaussian amplitude, background slope, background intercept]
|
|
examples:
|
|
guess = [None, None, 100, 0, None]
|
|
vary = [True, True, True, True, True]
|
|
constraints_min = [23, None, 50, 0, 0]
|
|
constraints_min = [80, None, 1000, 0, 100]
|
|
"""
|
|
meas = data["Measurements"][keys]
|
|
|
|
if len(meas["peak_indexes"]) > 1:
|
|
# return in case of more than 1 peaks
|
|
print("More than 1 peak, measurement skipped")
|
|
return
|
|
|
|
if binning is None or binning == 0 or binning == 1:
|
|
x = list(meas["om"])
|
|
y = list(meas["Counts"])
|
|
y_err = list(np.sqrt(y)) if meas.get("sigma", None) is None else list(meas["sigma"])
|
|
centre = x[int(meas["peak_indexes"])]
|
|
else:
|
|
x = list(meas["om"])
|
|
centre = x[int(meas["peak_indexes"])]
|
|
x = bin_data(x, binning)
|
|
y = list(meas["Counts"])
|
|
y_err = list(np.sqrt(y)) if meas.get("sigma", None) is None else list(meas["sigma"])
|
|
combined = bin_data(create_uncertanities(y,y_err), binning)
|
|
y = [combined[i].n for i in range(len(combined))]
|
|
y_err = [combined[i].s for i in range(len(combined))]
|
|
|
|
|
|
if len(meas["peak_indexes"]) == 0:
|
|
# Case for no peak, gaussian in centre, sigma as 20% of range
|
|
print("No peak")
|
|
peak_index = find_nearest(x, np.mean(x))
|
|
guess[0] = x[int(peak_index)] if guess[0] is None else guess[0]
|
|
guess[1] = (x[-1] - x[0])/5 if guess[1] is None else guess[1]
|
|
guess[2] = 50 if guess[2] is None else guess[2]
|
|
guess[3] = 0 if guess[3] is None else guess[3]
|
|
guess[4] = np.mean(y) if guess[4] is None else guess[4]
|
|
constraints_min[2] = 0
|
|
|
|
elif len(meas["peak_indexes"]) == 1:
|
|
# case for one peak, takse into account users guesses
|
|
print("one peak")
|
|
peak_height = meas["peak_heights"]
|
|
guess[0] = centre if guess[0] is None else guess[0]
|
|
guess[1] = 0.1 if guess[1] is None else guess[1]
|
|
guess[2] = float(peak_height / 10) if guess[2] is None else float(guess[2])
|
|
guess[3] = 0 if guess[3] is None else guess[3]
|
|
guess[4] = np.median(x) if guess[4] is None else guess[4]
|
|
constraints_min[0] = np.min(x) if constraints_min[0] is None else constraints_min[0]
|
|
constraints_max[0] = np.max(x) if constraints_max[0] is None else constraints_max[0]
|
|
|
|
|
|
|
|
def gaussian(x, g_cen, g_width, g_amp):
|
|
"""1-d gaussian: gaussian(x, amp, cen, wid)"""
|
|
return (g_amp / (np.sqrt(2 * np.pi) * g_width)) * np.exp(
|
|
-((x - g_cen) ** 2) / (2 * g_width ** 2)
|
|
)
|
|
|
|
def background(x, slope, intercept):
|
|
"""background"""
|
|
return slope * (x - centre) + intercept
|
|
|
|
mod = Model(gaussian) + Model(background)
|
|
params = Parameters()
|
|
params.add_many(
|
|
("g_cen", x[int(peak_index)], bool(vary[0]), np.min(x), np.max(x), None, None),
|
|
(
|
|
"g_width",
|
|
guess[1],
|
|
bool(vary[1]),
|
|
constraints_min[1],
|
|
constraints_max[1],
|
|
None,
|
|
None,
|
|
),
|
|
(
|
|
"g_amp",
|
|
guess[2],
|
|
bool(vary[2]),
|
|
constraints_min[2],
|
|
constraints_max[2],
|
|
None,
|
|
None,
|
|
),
|
|
(
|
|
"slope",
|
|
guess[3],
|
|
bool(vary[3]),
|
|
constraints_min[3],
|
|
constraints_max[3],
|
|
None,
|
|
None,
|
|
),
|
|
(
|
|
"intercept",
|
|
guess[4],
|
|
bool(vary[4]),
|
|
constraints_min[4],
|
|
constraints_max[4],
|
|
None,
|
|
None,
|
|
),
|
|
)
|
|
# the weighted fit
|
|
result = mod.fit(y, params, weights=y_err, x=x, calc_covar=True)
|
|
# u.ufloat to work with uncertanities
|
|
fit_area = u.ufloat(result.params["g_amp"].value, result.params["g_amp"].stderr)
|
|
comps = result.eval_components()
|
|
|
|
if result.params["g_amp"].stderr is None:
|
|
result.params["g_amp"].stderr = result.params["g_amp"].value
|
|
elif result.params["g_amp"].stderr > result.params["g_amp"].value:
|
|
result.params["g_amp"].stderr = result.params["g_amp"].value
|
|
|
|
if len(meas["peak_indexes"]) == 0:
|
|
# for case of no peak, there is no reason to integrate, therefore fit and int are equal
|
|
int_area = fit_area
|
|
|
|
elif len(meas["peak_indexes"]) == 1:
|
|
gauss_3sigmamin = find_nearest(
|
|
x, result.params["g_cen"].value - 3 * result.params["g_width"].value
|
|
)
|
|
gauss_3sigmamax = find_nearest(
|
|
x, result.params["g_cen"].value + 3 * result.params["g_width"].value
|
|
)
|
|
numfit_min = gauss_3sigmamin if numfit_min is None else find_nearest(x, numfit_min)
|
|
numfit_max = gauss_3sigmamax if numfit_max is None else find_nearest(x, numfit_max)
|
|
|
|
it = -1
|
|
while abs(numfit_max - numfit_min) < 3:
|
|
# in the case the peak is very thin and numerical integration would be on zero omega difference, finds closes values
|
|
it = it + 1
|
|
numfit_min = find_nearest(
|
|
x,
|
|
result.params["g_cen"].value - 3 * (1 + it / 10) * result.params["g_width"].value,
|
|
)
|
|
numfit_max = find_nearest(
|
|
x,
|
|
result.params["g_cen"].value + 3 * (1 + it / 10) * result.params["g_width"].value,
|
|
)
|
|
|
|
if x[numfit_min] < np.min(x):
|
|
# makes sure that the values supplied by user lay in the omega range
|
|
# can be ommited for users who know what they're doing
|
|
numfit_min = gauss_3sigmamin
|
|
print("Minimal integration value outside of x range")
|
|
elif x[numfit_min] >= x[numfit_max]:
|
|
numfit_min = gauss_3sigmamin
|
|
print("Minimal integration value higher than maximal")
|
|
else:
|
|
pass
|
|
if x[numfit_max] > np.max(x):
|
|
numfit_max = gauss_3sigmamax
|
|
print("Maximal integration value outside of x range")
|
|
elif x[numfit_max] <= x[numfit_min]:
|
|
numfit_max = gauss_3sigmamax
|
|
print("Maximal integration value lower than minimal")
|
|
else:
|
|
pass
|
|
|
|
count_errors = create_uncertanities(y, y_err)
|
|
# create error vector for numerical integration propagation
|
|
num_int_area = simps(count_errors[numfit_min:numfit_max], x[numfit_min:numfit_max])
|
|
slope_err = u.ufloat(result.params["slope"].value, result.params["slope"].stderr)
|
|
# pulls the nominal and error values from fit (slope)
|
|
intercept_err = u.ufloat(
|
|
result.params["intercept"].value, result.params["intercept"].stderr
|
|
)
|
|
# pulls the nominal and error values from fit (intercept)
|
|
|
|
background_errors = np.array([])
|
|
for j in range(len(x[numfit_min:numfit_max])):
|
|
# creates nominal and error vector for numerical integration of background
|
|
bg = slope_err * (x[j] - centre) + intercept_err
|
|
background_errors = np.append(background_errors, bg)
|
|
|
|
num_int_background = simps(background_errors, x[numfit_min:numfit_max])
|
|
int_area = num_int_area - num_int_background
|
|
|
|
d = {}
|
|
for pars in result.params:
|
|
d[str(pars)] = (result.params[str(pars)].value, result.params[str(pars)].vary)
|
|
print(result.fit_report())
|
|
|
|
print((result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value)
|
|
d["export_fit"] = False
|
|
# ["export_fit"] = False if user wants num. int. value in comm/incomm, otherwise true
|
|
d["ratio"] = (result.params["g_amp"].value - int_area.n) / result.params["g_amp"].value
|
|
d["int_area"] = int_area
|
|
d["fit_area"] = u.ufloat(result.params["g_amp"].value, result.params["g_amp"].stderr)
|
|
d["full_report"] = result.fit_report()
|
|
d["result"] = result
|
|
d["comps"] = comps
|
|
meas["fit"] = d
|
|
|
|
return data
|